設(shè),橢圓方程為,拋物線方程為。如圖所示,過點
作軸的平行線,與拋物線在第一象限的交點為G。已知拋物線在點
G的切線經(jīng)過橢圓的右焦點F1。
(1)求滿足條件的橢圓方程和拋物線方程; (6分)
(2)設(shè)A、B分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點P,使得
△ABP為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具
體求出這些點的坐標(biāo))。(8分)
(本題滿分14分)
由得
當(dāng)時,,G點的坐標(biāo)為(4,b+2)
法一:GF的斜率,方程為
聯(lián)立與消去,由得
法二: 過點G的切線方程為整理得, ,
令y=0得 ,點的坐標(biāo)為 (2-b,0);
由橢圓方程得點的坐標(biāo)為(b,0),
即 b=1,
因此所求的橢圓方程及拋物線方程分別為和。
(2)過A作x軸的垂線與拋物線只有一個交點P,
以為直角的只有一個;
同理以為直角的只有一個;
若以為直角, 設(shè)P點的坐標(biāo)為,則A、B坐標(biāo)分別
為、
由得,
關(guān)于的一元二次方程有一解,x有二解,即以為直角的有二個;
因此拋物線上共存在4個點使為直角三角形。
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)
設(shè),橢圓方程為,拋物線方程為.如圖6所示,過點作軸的平行線,與拋物線在第一象限的交點為,已知拋物線在點的切線經(jīng)過橢圓的右焦點.
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點,使得為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標(biāo)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè),橢圓方程為,拋物線方程為.如圖所示,過點作軸的平行線,與拋物線在第一象限的交點為,已知拋物線在點的切線經(jīng)過橢圓的右焦點.
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點,使得為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標(biāo)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè),橢圓方程為,拋物線方程為.如圖6所示,過點作軸的平行線,與拋物線在第一象限的交點為,已知拋物線在點的切線經(jīng)過橢圓的右焦點.
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點,使得為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標(biāo)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(廣東卷理18文20)設(shè),橢圓方程為,拋物線方程為.如圖4所示,過點作軸的平行線,與拋物線在第一象限的交點為,已知拋物線在點的切線經(jīng)過橢圓的右焦點.
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點,使得為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標(biāo)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(廣東卷理18文20)設(shè),橢圓方程為,拋物線方程為.如圖4所示,過點作軸的平行線,與拋物線在第一象限的交點為,已知拋物線在點的切線經(jīng)過橢圓的右焦點.
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點,使得為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標(biāo)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com