(1)求數(shù)列的通項(xiàng)公式, 查看更多

 

題目列表(包括答案和解析)





⑴求數(shù)列的通項(xiàng)公式;
⑵設(shè),若恒成立,求實(shí)數(shù)的取值范圍;
⑶是否存在以為首項(xiàng),公比為的數(shù)列,,使得數(shù)列中每一項(xiàng)都是數(shù)列中不同的項(xiàng),若存在,求出所有滿足條件的數(shù)列的通項(xiàng)公式;若不存在,說明理由

查看答案和解析>>

數(shù)列的通項(xiàng)公式

(1)求:f(1)、f(2)、f(3)、f(4)的值;

(2)由上述結(jié)果推測出計(jì)算f(n)的公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

設(shè)數(shù)列的通項(xiàng)公式為。數(shù)列定義如下:對于正整數(shù)m,是使得不等式成立的所有n中的最小值。  (1)若,求b3;   (2)若,求數(shù)列的前2m項(xiàng)和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請說明理由。

查看答案和解析>>

設(shè)數(shù)列的通項(xiàng)公式為。數(shù)列定義如下:對于正整數(shù)m,是使得不等式成立的所有n中的最小值。

   (1)若,求b3;

   (2)若,求數(shù)列的前2m項(xiàng)和公式;

   (3)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請說明理由。

查看答案和解析>>

設(shè)數(shù)列的通項(xiàng)公式為。數(shù)列定義如下:對于正整數(shù)m,是使得不等式成立的所有n中的最小值。 (1)若,求b3;  (2)若,求數(shù)列的前2m項(xiàng)和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請說明理由。

查看答案和解析>>

 

一、選擇題(本大題共12個(gè)小題,每小題5分,共60分)

    1―5  BCBAB    6―10  CDBDD   11―12AB

20090323

13.9

14.

15.(1,0)

16.420

三、解答題:

17.解:(1)

   (2)由(1)知,

       

18.解:設(shè)“通過第一關(guān)”為事件A1,“補(bǔ)過且通過第一關(guān)”為事件A2,“通過第二關(guān)”為事件B1,“補(bǔ)過且通過第二關(guān)”為事件B2。             (2分)

   (1)不需要補(bǔ)過就可獲得獎(jiǎng)品的事件為A=A1?B1,又A1與B1相互獨(dú)立,則P(A)=P

(A1?B1)=P(A1)?P(B1)=。故他不需要補(bǔ)過就可獲得獎(jiǎng)品的概率為。

(6分)

   (2)由已知得ξ=2,3,4,注意到各事件之間的獨(dú)立性與互斥性,可得

       

19.解法:1:(1)

   (2)過E作EF⊥PC,垂足為F,連結(jié)DF。             (8分)

由Rt△EFC∽

<em id="48h84"><u id="48h84"></u></em>

<menu id="48h84"></menu>

解法2:(1)

   (2)設(shè)平面PCD的法向量為

        則

           解得   

AC的法向量取為

 角A―PC―D的大小為

20.(1)由已知得    

  是以a2為首項(xiàng),以

    (6分)

   (2)證明:

   

21:解(1)由線方程x+2y+10-6ln2=0知,

    直線斜率為

  

    所以   解得a=4,b=3。    (6分)

   (2)由(1)得

22.解:(1)設(shè)直線l的方程為

因?yàn)橹本l與橢圓交點(diǎn)在y軸右側(cè),

所以  解得2

l直線y截距的取值范圍為。          (4分)

   (2)①(Ⅰ)當(dāng)AB所在的直線斜率存在且不為零時(shí),

設(shè)AB所在直線方程為

解方程組           得

所以

設(shè)

所以

因?yàn)?i>l是AB的垂直平分線,所以直線l的方程為

 

因此

 又

   (Ⅱ)當(dāng)k=0或不存在時(shí),上式仍然成立。

綜上所述,M的軌跡方程為(λ≠0)。  (9分)

②當(dāng)k存在且k≠0時(shí),由(1)得

  解得

所以

解法:(1)由于

當(dāng)且僅當(dāng)4+5k2=5+4k2,即k≠±1時(shí)等號成立,

此時(shí),

 

當(dāng)

當(dāng)k不存在時(shí),

綜上所述,                      (14分)

解法(2):

因?yàn)?sub>

當(dāng)且僅當(dāng)4+5k2=5+4k2,即k≠±1時(shí)等號成立,

此時(shí)。

當(dāng)

當(dāng)k不存在時(shí),

綜上所述,。

 

 

 

 


同步練習(xí)冊答案