⑴求數(shù)列的通項公式;
⑵設(shè),若恒成立,求實數(shù)的取值范圍;
⑶是否存在以為首項,公比為的數(shù)列,,使得數(shù)列中每一項都是數(shù)列中不同的項,若存在,求出所有滿足條件的數(shù)列的通項公式;若不存在,說明理由
(1) (2) (3)

⑴因為,
所以.…………………………………………………………………………2分
因為,所以數(shù)列是以1為首項,公差為的等差數(shù)列.
所以.…………………………………………………………………………4分
⑵①當(dāng)時,



.…………………………………………………………………………6分
②當(dāng)時,


.…………………………………………8分
所以
要使恒成立,
只要使
只要使
故實數(shù)的取值范圍為.……………………………………………………10分
⑶由,知數(shù)列中每一項都不可能是偶數(shù).
①如存在以為首項,公比為2或4的數(shù)列,,
此時中每一項除第一項外都是偶數(shù),故不存在以為首項,公比為偶數(shù)的數(shù)列.……………………………………………………………………………………12分
②當(dāng)時,顯然不存在這樣的數(shù)列
當(dāng)時,若存在以為首項,公比為3的數(shù)列,
,,
所以滿足條件的數(shù)列的通項公式為.……………………………16分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知線段PA⊥矩形ABCD所在平面,M、N分別是AB、PC的中點。 

(1)求證:MN//平面PAD; 
(2)當(dāng)∠PDA=45°時,求證:MN⊥平面PCD;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列, 
(1) 求的通項公式;
(2) 令,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題




(1)求數(shù)列的通項;
(2)若對任意的整數(shù)恒成立,求實數(shù)的取值范圍;
(3)設(shè)數(shù)列,的前項和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(Ⅰ)若,記數(shù)列的前n項和為,當(dāng)時,求;
(Ⅱ)若,問是否存在實數(shù),使得中每一項恒小于它后面的項?若存
在,求出實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題





(1)求數(shù)列的通項公式;
(2)設(shè)的前n項和為,試問當(dāng)n為何值時,最大?并求出的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列的公差不為零,首項且前項和為.
(I)當(dāng)時,在數(shù)列中找一項,使得成為等比數(shù)列,求的值.
(II)當(dāng)時,若自然數(shù)滿足并且是等比數(shù)列,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列{an}中,a4+a5=15,a7=15,則a2為(   )
A.-3B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(北京市西城外語學(xué)!2010屆高三測試)已知等差數(shù)列{an}中,a2=6,a5=15.若bn=a2n ,求數(shù)列{bn}的前5項和。

查看答案和解析>>

同步練習(xí)冊答案