當(dāng)且時(shí).由.得. 查看更多

 

題目列表(包括答案和解析)

(12分).某市環(huán)保研究所對(duì)市中心每天環(huán)境污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合污染指數(shù)與時(shí)間x(小時(shí))的關(guān)系為,其中是與氣象有關(guān)的參數(shù),且,若用每天的最大值為當(dāng)天的綜合污染指數(shù),并記作.

(1)令,求t的取值范圍;(2)求函數(shù);

(3)市政府規(guī)定,每天的綜合污染指數(shù)不得超過(guò)2,試問(wèn)目前市中心的綜合污染是否超標(biāo)?請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

,,其中ω>0,記函數(shù)f(x)=(+k.

(1)若f(x)圖象中相鄰兩條對(duì)稱(chēng)軸間的距離不小于,求ω的取值范圍.

(2)若f(x)的最小正周期為π,且當(dāng)x時(shí),f(x)的最大值是,求f(x)的解析式,并說(shuō)明如何由y=sinx的圖象變換得到y(tǒng)=f(x)的圖象.

查看答案和解析>>

當(dāng)μ=0,σ=1時(shí),正態(tài)曲線為f(x)=
1
e-
x2
2
,x∈R
,我們稱(chēng)其為標(biāo)準(zhǔn)正態(tài)曲線,且定義Φ(x0)=P(x<x0),由此得到Φ(0)=
0.5
0.5

查看答案和解析>>

定義x1,x2,…,xn的“倒平均數(shù)”為
n
x1+x2+…+xn
(n∈N*).已知數(shù)列{an}前n項(xiàng)的“倒平均數(shù)”為
1
2n+ 4
,記cn=
an
n+1
(n∈N*).
(1)比較cn與cn+1的大;
(2)設(shè)函數(shù)f(x)=-x2+4x,對(duì)(1)中的數(shù)列{cn},是否存在實(shí)數(shù)λ,使得當(dāng)x≤λ時(shí),f(x)≤cn對(duì)任意n∈N*恒成立?若存在,求出最大的實(shí)數(shù)λ;若不存在,說(shuō)明理由.
(3)設(shè)數(shù)列{bn}滿(mǎn)足b1=1,b2=b(b∈R且b≠0),bn=|bn-1-bn-2|(n∈N*且n≥3),且{bn}是周期為3的周期數(shù)列,設(shè)Tn為{bn}前n項(xiàng)的“倒平均數(shù)”,求
lim
n→∞
Tn

查看答案和解析>>

當(dāng)μ=0,σ=1時(shí),正態(tài)曲線為f(x)=
1
e-
x2
2
,x∈R
,我們稱(chēng)其為標(biāo)準(zhǔn)正態(tài)曲線,且定義Φ(x0)=P(x<x0),由此得到Φ(0)=______.

查看答案和解析>>


同步練習(xí)冊(cè)答案