3.求直線()被曲線所截的弦長.將方程.分別化為普通方程: 查看更多

 

題目列表(包括答案和解析)

 (09年揚(yáng)州中學(xué)2月月考)(10分)(坐標(biāo)系與參數(shù)方程)求直線)被曲線所截的弦長.

查看答案和解析>>

本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(Ⅰ)選修4-2:矩陣與變換,
已知矩陣A=
01
a0
,矩陣B=
02
b0
,直線l1
:x-y+4=0經(jīng)矩陣A所對應(yīng)的變換得直線l2,直線l2又經(jīng)矩陣B所對應(yīng)的變換得到直線l3:x+y+4=0,求直線l2的方程.
(Ⅱ)選修4-4:坐標(biāo)系與參數(shù)方程,
求直線
x=-2+2t
y=-2t
被曲線
x=1+4cosθ
y=-1+4sinθ
截得的弦長.
(Ⅲ)選修4-5:不等式選講,解不等式|x+1|+|2x-4|>6.

查看答案和解析>>

選修4-4(坐標(biāo)系與參數(shù)方程)
求直線
x=1+4t
y=-1-3t
(t為參數(shù))被曲線ρ=
2
cos(θ+
π
4
)
所截的弦長.

查看答案和解析>>

(選做題)請考生在A、B、C三題中任選一題作答,如果多做,則按所做的第一題記分.作答時請寫清題號.
A.選修4-1(幾何證明選講)已知AD為圓O的直徑,直線BA與圓O相切與點(diǎn)A,直線OB與弦AC垂直并相交于點(diǎn)G,與弧AC相交于M,連接DC,AB=10,AC=12.
(Ⅰ)求證:BA•DC=GC•AD;(Ⅱ)求BM.
B.選修4-4(坐標(biāo)系與參數(shù)方程)求直線
x=1+4t
y=-1-3t
(t為參數(shù))被曲線ρ=
2
cos(θ+
π
4
)
所截的弦長.
C.選修4-5(不等式選講)(Ⅰ)求函數(shù)y=3
x-5
+4
6-x
的最大值;
(Ⅱ)已知a≠b,求證:a4+6a2b2+b4>4ab(a2+b2).

查看答案和解析>>

(坐標(biāo)系與參數(shù)方程)求直線
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù))被曲線ρ=
2
cos(θ+
π
4
)
所截的弦長.

查看答案和解析>>


同步練習(xí)冊答案