選修4-4(坐標(biāo)系與參數(shù)方程)
求直線
x=1+4t
y=-1-3t
(t為參數(shù))被曲線ρ=
2
cos(θ+
π
4
)
所截的弦長.
分析:利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系:ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進行代換即得曲線ρ=
2
cos(θ+
π
4
)
的直角坐標(biāo)方程,消去參數(shù)t得到直線
x=1+4t
y=-1-3t
(t為參數(shù))的普通方程,最后利用直線和圓的相交關(guān)系求解.
解答:解:曲線ρ=
2
cos(θ+
π
4
)
,即ρ2=ρcosθ-ρsinθ,化為直角坐標(biāo)方程為x2+y2=x-y,
即為(x-
1
2
2+(y+
1
2
2=
1
2
,
直線
x=1+4t
y=-1-3t
(t為參數(shù))的方程是:3x+4y+1=0
曲線C表示以(
1
2
,-
1
2
)為圓心,以r=
2
2
為半徑的圓.
圓心到直線l距離d=
|3×
1
2
-4×
1
2
+1|
9+16
=
1
10

所截的弦長|AB|=2
r2-d2
=2
1
2
-
1
100
=
7
5
點評:本題考查了極坐標(biāo)、直角坐標(biāo)方程、及參數(shù)方程的互化,圓中弦長計算.圓中弦長公式為.|AB|=2
r2-d2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為
x=
1
2
t
y=
2
2
+
3
2
t
(t為參數(shù)),若以直角坐標(biāo)系xoy 的O點為極點,Ox為極軸,且長度單位相同,建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=2cos(θ-
π
4
).直線l與曲線C交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A.選修4-1:幾何證明選講
如圖,△ABC的外接圓的切線AE與BC的延長線相交于點E,∠BAC的平分線與BC
交于點D.求證:ED2=EB•EC.
B.選修4-2:矩陣與變換
求矩陣M=
-14
26
的特征值和特征向量.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在以O(shè)為極點的極坐標(biāo)系中,直線l與曲線C的極坐標(biāo)方程分別是ρcos(θ+
π
4
)=
3
2
2
和ρsin2θ=4cosθ,直線l與曲線C交于點.A,B,C,求線段AB的長.
D.選修4-5:不等式選講
對于實數(shù)x,y,若|x-1|≤1,|y-2|≤1,求|x-y+1|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•遼寧)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xoy中以O(shè)為極點,x軸正半軸為極軸建立坐標(biāo)系.圓C1,直線C2的極坐標(biāo)方程分別為ρ=4sinθ,ρcos(θ-
π
4
)=2
2

(Ⅰ)求C1與C2交點的極坐標(biāo);
(Ⅱ)設(shè)P為C1的圓心,Q為C1與C2交點連線的中點,已知直線PQ的參數(shù)方程為
x=t3+a
y=
b
2
t3+1
(t∈R為參數(shù)),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:
坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系x0y中,曲線C1為x=acosφ,y=sinφ(1<a<6,φ為參數(shù)).
在以0為原點,x軸正半軸為極軸的極坐標(biāo)中,曲線C2的方程為ρ=6cosθ,射線ι為θ=α,ι與C1的交點為A,ι與C2除極點外的一個交點為B.當(dāng)α=0時,|AB|=4.
(1)求C1,C2的直角坐標(biāo)方程;
(2)若過點P(1,0)且斜率為
3
的直線m與曲線C1交于D、E兩點,求|PD|與|PE|差的絕對值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•晉中三模)選修4-4:坐標(biāo)系與參數(shù)方程選講
在直角坐標(biāo)系xoy中,曲線c1的參數(shù)方程為:
x=2cosθ
y=2sinθ
(θ為參數(shù)),把曲線c1上所有點的縱坐標(biāo)壓縮為原來的一半得到曲線c2,以O(shè)為極點,x正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
2
ρcos(θ-
π
4
)=4

(1)求曲線c2的普通方程,并指明曲線類型;
(2)過(1,0)點與l垂直的直線l1與曲線c2相交與A、B兩點,求弦AB的長.

查看答案和解析>>

同步練習(xí)冊答案