(Ⅱ)求數(shù)列的通項公式. 查看更多

 

題目列表(包括答案和解析)

(本小題共12分) 在平面直角坐標(biāo)系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),滿足向量與向量共線,且點An(n,an) (n∈N*)都在斜率為2的同一條直線l上. 若a1=-3,b1=10。1)求數(shù)列{an}與{ bn }的通項公式;

(2)求當(dāng)n取何值時△AnBnCn的面積Sn最小,并求出Sn的這個最小值。 

查看答案和解析>>

(本小題共13分)

設(shè)數(shù)列的通項公式為. 數(shù)列定義如下:對于正整數(shù)m,是使得不等式成立的所有n中的最小值。

(Ⅰ)若,求;

(Ⅱ)若,求數(shù)列的前2m項和公式;w.w.w.k.s.5.u.c.o.m    

(Ⅲ)是否存在pq,使得?如果存在,求pq的取值范圍;如果不存在,請說明理由。

查看答案和解析>>

. (本小題共14分)

         已知函數(shù),數(shù)列是公差為d的等差數(shù)列,是公比為q

)的等比數(shù)列.若

     (Ⅰ)求數(shù)列,的通項公式;     

(Ⅱ)設(shè)數(shù)列對任意自然數(shù)n均有,求 的值.

     

查看答案和解析>>

(本小題共14分)

已知數(shù)列滿足,點在直線上.

   (I)求數(shù)列的通項公式;

   (II)若數(shù)列滿足

        求的值;

   (III)對于(II)中的數(shù)列,求證:

       

查看答案和解析>>

(本小題共13分)

數(shù)列滿足),是常數(shù)。

(Ⅰ)當(dāng)時,求的值;

(Ⅱ)數(shù)列是否可能為等差數(shù)列?若可能,求出它的通項公式;若不可能,說明理由;

(Ⅲ)求的取值范圍,使得存在正整數(shù),當(dāng)時總有。

查看答案和解析>>

一、選擇題(本大題共8小題,每小題5,40

ACDDB CDC

 

二、填空題(本大題共6小題,每小題5分.有兩空的小題,第一空3分,第二空2分,共30分)

(9)62        (10)2        (11)         (12)2,

(13)    (14),③④

三、解答題(本大題共6小題,共80分)

(15)(本小題共13分)

解:(Ⅰ)∵),

).                ………………………………………1分

,,成等差數(shù)列,

.                                  ………………………………………3分

.                                     ………………………………………5分

.                                             ………………………………………6分

(Ⅱ)由(Ⅰ)得

).

∴數(shù)列為首項是,公差為1的等差數(shù)列.         ………………………………………8分

.

.                                         ………………………………………10分

當(dāng)時,.      ………………………………………12分

當(dāng)時,上式也成立.                             ………………………………………13分

).

 

(16)(本小題共13分)

解:(Ⅰ)該間教室兩次檢測中,空氣質(zhì)量均為A級的概率為.………………………………2分

該間教室兩次檢測中,空氣質(zhì)量一次為A級,另一次為B級的概率為.

                                                          …………………………………4分

設(shè)“該間教室的空氣質(zhì)量合格”為事件E.則                    …………………………………5分

.                              …………………………………6分

答:估計該間教室的空氣質(zhì)量合格的概率為.

(Ⅱ)由題意可知,的取值為0,1,2,3,4.                …………………………………7分

.

隨機(jī)變量的分布列為:

0

1

2

3

4

                                                        …………………………………12分

解法一:

.    …………………………………13分

解法二:,

.                                       …………………………………13分

 

(17)(本小題共14分)

(Ⅰ)證明:設(shè)的中點為.

在斜三棱柱中,點在底面上的射影恰好是的中點,

     平面ABC.         ……………………1分

平面,

.               ……………………2分

,

.

,

平面.       ……………………4分

平面,

    平面平面.                          ………………………………………5分

解法一:(Ⅱ)連接,平面,

是直線在平面上的射影.          ………………………………………5分

,

四邊形是菱形.

.                                   ………………………………………7分

.                                   ………………………………………9分

(Ⅲ)過點于點,連接.

平面.

.

是二面角的平面角.               ………………………………………11分

設(shè),則,

.

.

.

.

平面,平面

.

.

中,可求.

,∴.

.

.                   ………………………………………13分

.

∴二面角的大小為.             ………………………………………14分

解法二:(Ⅱ)因為點在底面上的射影是的中點,設(shè)的中點為,則平面ABC.以為原點,過平行于的直線為軸,所在直線為軸,所在直線為軸,建立如圖所示的空間直角坐標(biāo)系.

設(shè),由題意可知,.

設(shè),由,得

………………………………………7分

.

  又.

.

.                                              ………………………………………9分

(Ⅲ)設(shè)平面的法向量為.

.

設(shè)平面的法向量為.則

.                                   ………………………………………12分

.                        ………………………………………13分

二面角的大小為.           ………………………………………14分

(18)(本小題共13分)

解:(Ⅰ)函數(shù)的定義域為.                 ………………………………………1分

.             ………………………………………3分

,解得.

,解得

的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,

………………………………………6分

(Ⅱ)由題意可知,,且上的最小值小于等于時,存在實數(shù),使得不等式成立.                             ………………………………………7分

時,

x

a+1

-

0

+

極小值

上的最小值為

,得.                           ………………………………………10分

時,上單調(diào)遞減,則上的最小值為

(舍).                            ………………………………………12分

綜上所述,.                               ………………………………………13分

(19)(本小題共13分)

解:(Ⅰ)由拋物線C:得拋物線的焦點坐標(biāo)為,設(shè)直線的方程為:.                                       ………………………………………1分

.

所以,.因為, …………………………………3分

所以.

所以.即.

所以直線的方程為:.           ………………………………………5分

(Ⅱ)設(shè),,則.

.

因為,所以,. ……………………………………7分

   (?)設(shè),則.

  由題意知:,.

.

  顯然      ………………………………………9分

(?)由題意知:為等腰直角三角形,,即,即.

. .

..                      ………………………………………11分

  .

的取值范圍是.                           ………………………………………13分

 

(20)(本小題共14分)

解:(Ⅰ)取,得,即.

因為,所以.                         ………………………………………1分

,得.因為,所以.

,得,所以.

                                                    ………………………………………3分

(Ⅱ)在中取.

所以.

中取,得.

中取,

.

所以.

中取,

.

所以.

中取

         .

所以對任意實數(shù)均成立.

所以.                        ………………………………………9分

(Ⅲ)由(Ⅱ)知,

中,

,得,即  ①

,得

,得,即

②+①得,②+③得.

.

代入①得.

代入②得.

.

由(Ⅱ)知,所以對一切實數(shù)成立.

故當(dāng)時,對一切實數(shù)成立.

存在常數(shù),使得不等式對一切實數(shù)成立,且為滿足題設(shè)的唯一一組值.                   ………………………………………14分

 

說明:其它正確解法按相應(yīng)步驟給分.

 

 


同步練習(xí)冊答案