題目列表(包括答案和解析)
已知,(其中)
⑴求及;
⑵試比較與的大小,并說明理由.
【解析】第一問中取,則; …………1分
對等式兩邊求導(dǎo),得
取,則得到結(jié)論
第二問中,要比較與的大小,即比較:與的大小,歸納猜想可得結(jié)論當(dāng)時,;
當(dāng)時,;
當(dāng)時,;
猜想:當(dāng)時,運(yùn)用數(shù)學(xué)歸納法證明即可。
解:⑴取,則; …………1分
對等式兩邊求導(dǎo),得,
取,則。 …………4分
⑵要比較與的大小,即比較:與的大小,
當(dāng)時,;
當(dāng)時,;
當(dāng)時,; …………6分
猜想:當(dāng)時,,下面用數(shù)學(xué)歸納法證明:
由上述過程可知,時結(jié)論成立,
假設(shè)當(dāng)時結(jié)論成立,即,
當(dāng)時,
而
∴
即時結(jié)論也成立,
∴當(dāng)時,成立。 …………11分
綜上得,當(dāng)時,;
當(dāng)時,;
當(dāng)時,
已知遞增等差數(shù)列滿足:,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)若不等式對任意恒成立,試猜想出實(shí)數(shù)的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問中,利用設(shè)數(shù)列公差為,
由題意可知,即,解得d,得到通項(xiàng)公式,第二問中,不等式等價(jià)于,利用當(dāng)時,;當(dāng)時,;而,所以猜想,的最小值為然后加以證明即可。
解:(1)設(shè)數(shù)列公差為,由題意可知,即,
解得或(舍去). …………3分
所以,. …………6分
(2)不等式等價(jià)于,
當(dāng)時,;當(dāng)時,;
而,所以猜想,的最小值為. …………8分
下證不等式對任意恒成立.
方法一:數(shù)學(xué)歸納法.
當(dāng)時,,成立.
假設(shè)當(dāng)時,不等式成立,
當(dāng)時,, …………10分
只要證 ,只要證 ,
只要證 ,只要證 ,
只要證 ,顯然成立.所以,對任意,不等式恒成立.…14分
方法二:單調(diào)性證明.
要證
只要證 ,
設(shè)數(shù)列的通項(xiàng)公式, …………10分
, …………12分
所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.
而,所以恒成立,
故的最小值為.
已知數(shù)列的前項(xiàng)和為,且 (N*),其中.
(Ⅰ) 求的通項(xiàng)公式;
(Ⅱ) 設(shè) (N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問,第二問中利用放縮法得到,②由于,
所以利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)時,由得. ……2分
若存在由得,
從而有,與矛盾,所以.
從而由得得. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一. ……10分
證法三:(利用對偶式)設(shè),,
則.又,也即,所以,也即,又因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)時, ,命題成立;
②假設(shè)時,命題成立,即,
則當(dāng)時,
即
即
故當(dāng)時,命題成立.
綜上可知,對一切非零自然數(shù),不等式②成立. ………………10分
②由于,
所以,
從而.
也即
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com