已知,(其中)
⑴求及;
⑵試比較與的大小,并說明理由.
【解析】第一問中取,則; …………1分
對等式兩邊求導,得
取,則得到結(jié)論
第二問中,要比較與的大小,即比較:與的大小,歸納猜想可得結(jié)論當時,;
當時,;
當時,;
猜想:當時,運用數(shù)學歸納法證明即可。
解:⑴取,則; …………1分
對等式兩邊求導,得,
取,則。 …………4分
⑵要比較與的大小,即比較:與的大小,
當時,;
當時,;
當時,; …………6分
猜想:當時,,下面用數(shù)學歸納法證明:
由上述過程可知,時結(jié)論成立,
假設當時結(jié)論成立,即,
當時,
而
∴
即時結(jié)論也成立,
∴當時,成立。 …………11分
綜上得,當時,;
當時,;
當時,
科目:高中數(shù)學 來源: 題型:
(14分)已知函數(shù),其中實數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當函數(shù)與的圖象只有一個公共點且存最在小值時,記的最小值為,求的值域
(3)若在區(qū)間內(nèi)均為增函數(shù),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年吉林通化第一中學高三上學期第二次月考文科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù),其中.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若直線是曲線的切線,求實數(shù)的值;
(Ⅲ)設,求在區(qū)間上的最小值.(為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年黑龍江省高三第一學期期末考試理科數(shù)學 題型:填空題
(本小題滿分12分)
已知函數(shù),其中.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若直線是曲線的切線,求實數(shù)的值;
(Ⅲ)設,求在區(qū)間上的最大值.(其中為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省廈門市高三10月月考理科數(shù)學試卷 題型:解答題
已知函數(shù),其中.
⑴若,求曲線在點處的切線方程;
⑵若在區(qū)間上,恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆廣東省高一第二次段考數(shù)學試卷 題型:解答題
(本小題滿分14分)已知函數(shù),其中.
(1)求函數(shù)的定義域;
(2)判斷的奇偶性,并說明理由;
(3)若,求使成立的的集合。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com