題目列表(包括答案和解析)
設(shè)函數(shù)
(1)當(dāng)時(shí),求曲線處的切線方程;
(2)當(dāng)時(shí),求的極大值和極小值;
(3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.
【解析】(1)中,先利用,表示出點(diǎn)的斜率值這樣可以得到切線方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。
解:(1)當(dāng)……2分
∴
即為所求切線方程!4分
(2)當(dāng)
令………………6分
∴遞減,在(3,+)遞增
∴的極大值為…………8分
(3)
①若上單調(diào)遞增!酀M足要求。…10分
②若
∵恒成立,
恒成立,即a>0……………11分
時(shí),不合題意。綜上所述,實(shí)數(shù)的取值范圍是
橢圓=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,過焦點(diǎn)F1的傾斜角為30°直線交橢圓于A,B兩點(diǎn),弦長|AB|=8,若三角形ABF2的內(nèi)切圓的面積為π,則橢圓的離心率為
(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點(diǎn)的橢圓恰與直線l也相切,切點(diǎn)為T,求橢圓的方程及點(diǎn)T的坐標(biāo);
(2)若直線l與雙曲線6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線段MN的中點(diǎn),又過點(diǎn)E的直線與該雙曲線的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為p,且()p2=m,m∈[,],求(1)中切點(diǎn)T到直線PQ的距離的最小值.
(文)如圖,與拋物線x2=-4y相切于點(diǎn)A(-4,-4)的直線l分別交x軸、y軸于點(diǎn)F、E,過點(diǎn)E作y軸的垂線l0.
(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點(diǎn)的橢圓恰好過點(diǎn)F,求橢圓的方程;
(2)若直線l與雙曲線6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線段MN的中點(diǎn),又過點(diǎn)E的直線與該雙曲線的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為p,且()p2=m,m∈[,],求直線PQ的斜率的取值范圍.
(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點(diǎn)的橢圓恰與直線l也相切,切點(diǎn)為T,求橢圓的方程及點(diǎn)T的坐標(biāo);
(2)若直線l與雙曲線6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線段MN的中點(diǎn),又過點(diǎn)E的直線與該雙曲線的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為p,且p2=m,m∈,求(1)中切點(diǎn)T到直線PQ的距離的最小值.
(文)如圖,與拋物線x2=-4y相切于點(diǎn)A(-4,-4)的直線l分別交x軸、y軸于點(diǎn)F、E,過點(diǎn)E作y軸的垂線l0.
(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點(diǎn)的橢圓恰好過點(diǎn)F,求橢圓的方程;
(2)若直線l與雙曲線6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線段MN的中點(diǎn),又過點(diǎn)E的直線與該雙曲線的兩支分別交于P、Q兩點(diǎn),記在x軸正方向上的投影為p,且=m,m∈,求直線PQ的斜率的取值范圍.
已知為橢圓:的左、右焦點(diǎn),過橢圓右焦點(diǎn)F2斜率為()的直線與橢圓相交于兩點(diǎn),的周長為8,且橢圓C與圓相切。
(1)求橢圓的方程;
(2)設(shè)為橢圓的右頂點(diǎn),直線分別交直線于點(diǎn),線段的中點(diǎn)為,記直線的斜率為,求證為定值.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com