已知為橢圓:的左、右焦點(diǎn),過橢圓右焦點(diǎn)F2斜率為()的直線與橢圓相交于兩點(diǎn),的周長為8,且橢圓C與圓相切。
(1)求橢圓的方程;
(2)設(shè)為橢圓的右頂點(diǎn),直線分別交直線于點(diǎn),線段的中點(diǎn)為,記直線的斜率為,求證為定值.
(1) (2)= 證明詳見解析.
解析試題分析:(1)由的周長為8,可得4a=8,又由橢圓C與圓相切,可得b2=3,即可求得橢圓的方程為.
(2)設(shè)過點(diǎn) 的直線方程為:,設(shè)點(diǎn),點(diǎn),將直線方程代入橢圓中,整理可得關(guān)于x的一元二次方程,該方程由兩個(gè)不等的實(shí)數(shù)根,其判別式恒大于零,求出,的表達(dá)式,由點(diǎn)斜式分別寫出直線AE,AF的方程,然后求出點(diǎn)M,N的坐標(biāo),在求出點(diǎn)P的坐標(biāo),由兩點(diǎn)的斜率公式求出直線 的斜率,整理即可求得=.
(1)由題意得 3分
所求橢圓C的方程為. 4分
(2)設(shè)過點(diǎn) 的直線方程為:,
設(shè)點(diǎn),點(diǎn) 5分
將直線方程代入橢圓
整理得: 6分
因?yàn)辄c(diǎn)在橢圓內(nèi),所以直線和橢圓都相交,恒成立,
且 7分
直線的方程為:,直線的方程為:
令,得點(diǎn),,
所以點(diǎn)的坐標(biāo) 9分
直線 的斜率為
11分
將代入上式得:
所以為定值
考點(diǎn): 1.橢圓的方程和性質(zhì);2.直線的斜率公式;3.直線與曲線的位置關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知長方形的兩條對角線的交點(diǎn)為,且與所在的直線方程分別為.
(1)求所在的直線方程;
(2)求出長方形的外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)A(3,3),B(5,2)到直線l的距離相等,且直線l經(jīng)過兩直線l1:3x-y-1=0和l2:x+y-3=0的交點(diǎn),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是橢圓上不關(guān)于坐標(biāo)軸對稱的兩個(gè)點(diǎn),直線交軸于點(diǎn)(與點(diǎn)不重合),O為坐標(biāo)原點(diǎn).
(1)如果點(diǎn)是橢圓的右焦點(diǎn),線段的中點(diǎn)在y軸上,求直線AB的方程;
(2)設(shè)為軸上一點(diǎn),且,直線與橢圓的另外一個(gè)交點(diǎn)為C,證明:點(diǎn)與點(diǎn)關(guān)于軸對稱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4.
(1)若直線l過點(diǎn)A(4,0),且被圓C1截得的弦長為2,求直線l的方程;
(2)設(shè)P為平面上的點(diǎn),滿足:存在過點(diǎn)P的無窮多對互相垂直的直線l1和l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試求所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的中心為原點(diǎn),左、右焦點(diǎn)分別為、,離心率為,點(diǎn)是直線上任意一點(diǎn),點(diǎn)在雙曲線上,且滿足.
(1)求實(shí)數(shù)的值;
(2)證明:直線與直線的斜率之積是定值;
(3)若點(diǎn)的縱坐標(biāo)為,過點(diǎn)作動直線與雙曲線右支交于不同的兩點(diǎn)、,在線段上去異于點(diǎn)、的點(diǎn),滿足,證明點(diǎn)恒在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知線段PQ兩端點(diǎn)的坐標(biāo)分別為(-1,1)、(2,2),若直線l:x+my+m=0與線段PQ有交點(diǎn),求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com