題目列表(包括答案和解析)
已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過(guò)點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存過(guò)點(diǎn)(2,1)的直線(xiàn)與橢圓相交于不同的兩點(diǎn),滿(mǎn)足?若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.
【解析】第一問(wèn)利用設(shè)橢圓的方程為,由題意得
解得
第二問(wèn)若存在直線(xiàn)滿(mǎn)足條件的方程為,代入橢圓的方程得
.
因?yàn)橹本(xiàn)與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為,
所以
所以.解得。
解:⑴設(shè)橢圓的方程為,由題意得
解得,故橢圓的方程為.……………………4分
⑵若存在直線(xiàn)滿(mǎn)足條件的方程為,代入橢圓的方程得
.
因?yàn)橹本(xiàn)與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為,
所以
所以.
又,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912284792138316/SYS201207091229220620471975_ST.files/image009.png">,即,
所以.
即.
所以,解得.
因?yàn)锳,B為不同的兩點(diǎn),所以k=1/2.
于是存在直線(xiàn)L1滿(mǎn)足條件,其方程為y=1/2x
設(shè)橢圓的左、右頂點(diǎn)分別為,點(diǎn)在橢圓上且異于兩點(diǎn),為坐標(biāo)原點(diǎn).
(Ⅰ)若直線(xiàn)與的斜率之積為,求橢圓的離心率;
(Ⅱ)若,證明直線(xiàn)的斜率 滿(mǎn)足
【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有 ①
由,得,
由,可得,代入①并整理得
由于,故.于是,所以橢圓的離心率
(2)證明:(方法一)
依題意,直線(xiàn)OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.
由條件得消去并整理得 ②
由,及,
得.
整理得.而,于是,代入②,
整理得
由,故,因此.
所以.
(方法二)
依題意,直線(xiàn)OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.
由P在橢圓上,有
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以,即 ③
由,,得整理得.
于是,代入③,
整理得
解得,
所以.
已知m>1,直線(xiàn),橢圓C:,、分別為橢圓C的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線(xiàn)過(guò)右焦點(diǎn)時(shí),求直線(xiàn)的方程;
(Ⅱ)設(shè)直線(xiàn)與橢圓C交于A、B兩點(diǎn),△A、△B的重心分別為G、H.若原點(diǎn)O在以線(xiàn)段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.[
【解析】第一問(wèn)中因?yàn)橹本(xiàn)經(jīng)過(guò)點(diǎn)(,0),所以=,得.又因?yàn)閙>1,所以,故直線(xiàn)的方程為
第二問(wèn)中設(shè),由,消去x,得,
則由,知<8,且有
由題意知O為的中點(diǎn).由可知從而,設(shè)M是GH的中點(diǎn),則M().
由題意可知,2|MO|<|GH|,得到范圍
設(shè)橢圓 :()的一個(gè)頂點(diǎn)為,,分別是橢圓的左、右焦點(diǎn),離心率 ,過(guò)橢圓右焦點(diǎn) 的直線(xiàn) 與橢圓 交于 , 兩點(diǎn).
(1)求橢圓的方程;
(2)是否存在直線(xiàn) ,使得 ,若存在,求出直線(xiàn) 的方程;若不存在,說(shuō)明理由;
【解析】本試題主要考查了橢圓的方程的求解,以及直線(xiàn)與橢圓的位置關(guān)系的運(yùn)用。(1)中橢圓的頂點(diǎn)為,即又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714546570844292_ST.files/image015.png">,得到,然后求解得到橢圓方程(2)中,對(duì)直線(xiàn)分為兩種情況討論,當(dāng)直線(xiàn)斜率存在時(shí),當(dāng)直線(xiàn)斜率不存在時(shí),聯(lián)立方程組,結(jié)合得到結(jié)論。
解:(1)橢圓的頂點(diǎn)為,即
,解得, 橢圓的標(biāo)準(zhǔn)方程為 --------4分
(2)由題可知,直線(xiàn)與橢圓必相交.
①當(dāng)直線(xiàn)斜率不存在時(shí),經(jīng)檢驗(yàn)不合題意. --------5分
②當(dāng)直線(xiàn)斜率存在時(shí),設(shè)存在直線(xiàn)為,且,.
由得, ----------7分
,,
=
所以, ----------10分
故直線(xiàn)的方程為或
即或
已知曲線(xiàn)C:(m∈R)
(1) 若曲線(xiàn)C是焦點(diǎn)在x軸點(diǎn)上的橢圓,求m的取值范圍;
(2) 設(shè)m=4,曲線(xiàn)c與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線(xiàn)y=kx+4與曲線(xiàn)c交于不同的兩點(diǎn)M、N,直線(xiàn)y=1與直線(xiàn)BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線(xiàn)。
【解析】(1)曲線(xiàn)C是焦點(diǎn)在x軸上的橢圓,當(dāng)且僅當(dāng)解得,所以m的取值范圍是
(2)當(dāng)m=4時(shí),曲線(xiàn)C的方程為,點(diǎn)A,B的坐標(biāo)分別為,
由,得
因?yàn)橹本(xiàn)與曲線(xiàn)C交于不同的兩點(diǎn),所以
即
設(shè)點(diǎn)M,N的坐標(biāo)分別為,則
直線(xiàn)BM的方程為,點(diǎn)G的坐標(biāo)為
因?yàn)橹本(xiàn)AN和直線(xiàn)AG的斜率分別為
所以
即,故A,G,N三點(diǎn)共線(xiàn)。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com