20. 查看更多

 

題目列表(包括答案和解析)

(本題滿分14分)

已知實數(shù),曲線與直線的交點(diǎn)為(異于原點(diǎn)),在曲線 上取一點(diǎn),過點(diǎn)平行于軸,交直線于點(diǎn),過點(diǎn)平行于軸,交曲線于點(diǎn),接著過點(diǎn)平行于軸,交直線于點(diǎn),過點(diǎn)平行于軸,交曲線于點(diǎn),如此下去,可以得到點(diǎn),,…,,… .  設(shè)點(diǎn)的坐標(biāo)為.

(Ⅰ)試用表示,并證明;   

(Ⅱ)試證明,且);

(Ⅲ)當(dāng)時,求證:  ().

查看答案和解析>>

(本題滿分14分)

 已知函數(shù)圖象上一點(diǎn)處的切線方程為

(Ⅰ)求的值;

(Ⅱ)若方程內(nèi)有兩個不等實根,求的取值范圍(其中為自然對數(shù)的底數(shù));

(Ⅲ)令,若的圖象與軸交于(其中),的中點(diǎn)為,求證:處的導(dǎo)數(shù)

查看答案和解析>>

(本題滿分14分)

已知曲線方程為,過原點(diǎn)O作曲線的切線

(1)求的方程;

(2)求曲線,軸圍成的圖形面積S;

(3)試比較的大小,并說明理由。

查看答案和解析>>

(本題滿分14分)

已知中心在原點(diǎn),對稱軸為坐標(biāo)軸的橢圓,左焦點(diǎn),一個頂點(diǎn)坐標(biāo)為(0,1)

(1)求橢圓方程;

(2)直線過橢圓的右焦點(diǎn)交橢圓于A、B兩點(diǎn),當(dāng)△AOB面積最大時,求直線方程。

查看答案和解析>>

(本題滿分14分)

如圖,在直三棱柱中,,,求二面角的大小。    

查看答案和解析>>

 

一、選擇題:本大題共有8個小題,每小題5分,共40分;在每個小題給出的四個選項中有且僅有一個是符合題目要求的。

1―8 BDCAABCB

二、填空題:本大題共有6個小題,每小題5分,共30分;請把答案寫在相應(yīng)的位置上。

9.    10.    11.7    12.    13.    14.

三、解答題:本大題共6個小題,共80分;解答應(yīng)寫出文字說明,證明過程或演算步驟。

15.(本題滿分13分)

解:

   (1)

   (2)由(1)知,

16.(本題滿分13分)

    解:(1)表示經(jīng)過操作以后袋中只有1個紅球,有兩種情形出現(xiàn)

①先從中取出紅和白,再從中取一白到

②先從中取出紅球,再從中取一紅球到

。 ………………7分

   (2)同(1)中計算方法可知:。

于是的概率分布列

0

1

2

3

P

  。 ………………13分

17.(本題滿分13分)

解法1:(1)連結(jié)MA、B1M,過M作MN⊥B1M,且MN交CC1點(diǎn)N,

又∵平面ABC⊥平面BB1C1C,

平面ABC∩平面BB1C1C=BC,

∴AM⊥平面BB1C1C,

∵M(jìn)N平面BB1C1C,

∴MN⊥AM。

∵AM∩B1M=M,

∴MN⊥平面AMB1,∴MN⊥AB1。

∵在Rt△B1BM與Rt△MCN中,

即N為C1C四等分點(diǎn)(靠近點(diǎn)C)。  ……………………6分

   (2)過點(diǎn)M作ME⊥AB1,垂足為R,連結(jié)EN,

由(1)知MN⊥平面AMB1,

∴EN⊥AB1

∴∠MEN為二面角M―AB1―N的平面角。

∵正三棱柱ABC―A1B1C1,BB1=BC=2,

<dfn id="9n9pv"></dfn>
  1. <tt id="9n9pv"><tfoot id="9n9pv"></tfoot></tt>

    1. <li id="9n9pv"><thead id="9n9pv"></thead></li>
    2. ∴N點(diǎn)是C1C的四等分點(diǎn)(靠近點(diǎn)C)。  ………………6分

         (2)∵AM⊥BC,平面ABC⊥平面BB1C1C

      且平面ABC∩平面BB1C1C=BC,

      ∴AM⊥平面BB1C1C

      ∵M(jìn)N平面BB1C1,∴AM⊥MN,

      ∵M(jìn)N⊥AB1,∴MN⊥平面AMB1

       

      18.(本題滿分13分)

      解:(1)

         (2)當(dāng)

         (3)令

           ①

           ②

      ①―②得   ………………13分

      19.(本題滿分14分)

      解:(1)設(shè)橢圓C的方程:

         (2)由

              ①

      由①式得

      20.(本題滿分14分)

      解:(1)

         (2)證明:①在(1)的過程中可知

      ②假設(shè)在

      綜合①②可知:   ………………9分

         (3)由變形為:

         

       

       


      同步練習(xí)冊答案