題目列表(包括答案和解析)
(本題滿(mǎn)分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
在平行四邊形中,已知過(guò)點(diǎn)的直線(xiàn)與線(xiàn)段分別相交于點(diǎn)。若。
(1)求證:與的關(guān)系為;
(2)設(shè),定義函數(shù),點(diǎn)列在函數(shù)的圖像上,且數(shù)列是以首項(xiàng)為1,公比為的等比數(shù)列,為原點(diǎn),令,是否存在點(diǎn),使得?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
(3)設(shè)函數(shù)為上偶函數(shù),當(dāng)時(shí),又函數(shù)圖象關(guān)于直線(xiàn)對(duì)稱(chēng), 當(dāng)方程在上有兩個(gè)不同的實(shí)數(shù)解時(shí),求實(shí)數(shù)的取值范圍。
(本題滿(mǎn)分12分)
為了解某班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:
喜愛(ài)打籃球 | 不喜愛(ài)打籃球 | 合計(jì) | |
男生 | 5 | ||
女生 | 10 | ||
合計(jì) | 50 |
已知在全部50人中隨機(jī)抽取1人抽到喜愛(ài)打籃球的學(xué)生的概率為.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為喜愛(ài)打籃球與性別有關(guān)?說(shuō)明你的理由;
(3)已知喜愛(ài)打籃球的10位女生中,還喜歡打羽毛球,還喜歡打乒乓球,還喜歡踢足球,現(xiàn)再?gòu)南矚g打羽毛球、喜歡打乒乓球、喜歡踢足球的女生中各選出1名進(jìn)行其他方面的調(diào)查,求和不全被選中的概率.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
(本小題滿(mǎn)分16分)已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí), (其中e是自然界對(duì)數(shù)的底,)(1)求的解析式;(2)設(shè),求證:當(dāng)時(shí),;(3)是否存在實(shí)數(shù)a,使得當(dāng)時(shí),的最小值是3 ?如果存在,求出實(shí)數(shù)a的值;如果不存在,請(qǐng)說(shuō)明理由。
(本題滿(mǎn)分14分)已知數(shù)列中,且點(diǎn)在直線(xiàn)上. (1)求數(shù)列的通項(xiàng)公式; (2)若函數(shù)求函數(shù)的最小值; (3)設(shè)表示數(shù)列的前項(xiàng)和.試問(wèn):是否存在關(guān)于的整式,使得對(duì)于一切不小于2的自然數(shù)恒成立? 若存在,寫(xiě)出的解析式,并加以證明;若不存在,試說(shuō)明理由.
(本題滿(mǎn)分14分)設(shè),方程有唯一解,已知,且
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求和;
(3)問(wèn):是否存在最小整數(shù),使得對(duì)任意,有成立,若存在;求出的值;若不存在,說(shuō)明理由。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com