(1)求二面角的大小, 查看更多

 

題目列表(包括答案和解析)

二面角α-EF-β的大小為120°,A是它內(nèi)部的一點AB⊥α,AC⊥β,B,C分別為垂足.
(1)求證:平面ABC⊥β;
(2)當(dāng)AB=4cm,AC=6cm,求BC的長及A到EF的距離.

查看答案和解析>>

二面角αEFβ的大小為120°,A是它內(nèi)部的一點ABα,ACβ,B,C分別為垂足.

(1)求證:平面ABCβ;

(2)當(dāng)AB=4cm,AC=6cm,求BC的長及AEF的距離.

查看答案和解析>>

二面角α-EF-β的大小為120°,A是它內(nèi)部的一點AB⊥α,AC⊥β,B,C分別為垂足.
(1)求證:平面ABC⊥β;
(2)當(dāng)AB=4cm,AC=6cm,求BC的長及A到EF的距離.

查看答案和解析>>

二面角α-EF-β的大小為120°,A是它內(nèi)部的一點AB⊥α,AC⊥β,B,C分別為垂足.
(1)求證:平面ABC⊥β;
(2)當(dāng)AB=4cm,AC=6cm,求BC的長及A到EF的距離.

查看答案和解析>>

已知二面角αCDβ的大小為60°,EA⊥平面α,垂足為A,EB⊥平面β,垂足為B,EA=3,EB=4.

(1)求證:CD⊥AB;

(2)求E到CD的距離.

查看答案和解析>>

一、

1.C       2.D      3.B       4.D      5.D      6.B       7.D      8.A      9.A      10.C

11.D     12.A

1~11.略

12.解:

       是減函數(shù),由,得,,故選A.

二、

13.0.8       14.          15.          16.①③

三、

17.解:(1)

             

              的單調(diào)遞增區(qū)間為

       (2)

             

             

             

18.解:(1)當(dāng)時,有種坐法,

              ,即

              舍去.    

       (2)的可能取值是0,2,3,4

              又

             

              的概率分布列為          

0

2

3

4

              則

19.解:(1)時,,

             

              又              ,

             

              是一個以2為首項,8為公比的等比數(shù)列

             

       (2)

             

              最小正整數(shù)

20.解法一:

       (1)設(shè)于點

              平面

于點,連接,則由三垂線定理知:是二面角的平面角.

由已知得,

∴二面角的大小的60°.

       (2)當(dāng)中點時,有平面

              證明:取的中點,連接,則,

              ,故平面即平面

              平面,

              平面

解法二:由已知條件,以為原點,以、、軸、軸、軸建立空間直角坐標(biāo)系,則

             

       (1),

              ,設(shè)平面的一個法向量為

設(shè)平面的一個法向量為,則

二面角的大小為60°.

(2)令,則

       ,

       由已知,,要使平面,只需,即

則有,得當(dāng)中點時,有平面

21.解:(1)由條件得,所以橢圓方程是

             

(2)易知直線斜率存在,令

       由

      

,

,

代入

       有

22.解:(1)

       上為減函數(shù),時,恒成立,

       即恒成立,設(shè),則

       時,在(0,)上遞減速,

      

      

(2)若即有極大值又有極小值,則首先必需有兩個不同正要,,

       即有兩個不同正根

       令

    ∴當(dāng)時,有兩個不同正根

    不妨設(shè),由知,

    時,時,時,

    ∴當(dāng)時,既有極大值又有極小值.www.ks5u.com

 

 


同步練習(xí)冊答案