(1)證明:平面, 查看更多

 

題目列表(包括答案和解析)

平面內(nèi)n條直線,其中任何兩條不平行,任何三條不共點(diǎn).
(1)設(shè)這n條直線互相分割成f(n)條線段或射線,猜想f(n)的表達(dá)式并給出證明;
(2)求證:這n條直線把平面分成
n(n+1)2
+1
個(gè)區(qū)域.

查看答案和解析>>

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)M(1,-3)、N(5,1),若點(diǎn)C滿足
OC
=t
OM
+(1-t)
ON
(t∈R),點(diǎn)C的軌跡與拋物線:y2=4x交于A、B兩點(diǎn).
(Ⅰ)求證:
OA
OB
;
(Ⅱ)在x軸上是否存在一點(diǎn)P(m,0)(m∈R),使得過P點(diǎn)的直線交拋物線于D、E兩點(diǎn),并以該弦DE為直徑的圓都過原點(diǎn).若存在,請求出m的值及圓心的軌跡方程;若不存在,請說明理由.

查看答案和解析>>

平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O、M分別為CE、AB的中點(diǎn).
(I)求證:OD∥平面ABC;
(II)能否在EM上找一點(diǎn)N,使得ON⊥平面ABDE?若能,請指出點(diǎn)N的位置,并加以證明;若不能,請說明理由.

查看答案和解析>>

平面內(nèi)n條直線,其中任何兩條不平行,任何三條不共點(diǎn).
(1)設(shè)這n條直線互相分割成f(n)條線段或射線,猜想f(n)的表達(dá)式并給出證明;
(2)求證:這n條直線把平面分成數(shù)學(xué)公式個(gè)區(qū)域.

查看答案和解析>>

平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BDAE,BD⊥BA,BD=
1
2
AE=2
,O、M分別為CE、AB的中點(diǎn).
(I)求證:OD平面ABC;
(II)能否在EM上找一點(diǎn)N,使得ON⊥平面ABDE?若能,請指出點(diǎn)N的位置,并加以證明;若不能,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

 

1.B       2.D      3.A      4.C       5.C       6.D      7.D      8.B       9.C       10.B

11.A     12.C

1.,所以選B.

2.,所以選D.

3.,所以選

4.,所以選C.

5.,所以選C.

6.,切線斜率

       ,所以選D.

7.觀察圖象.所以選D.

8.化為,所以選B.

9.關(guān)于對稱,,所以選C.

10.直線與橢圓有公共點(diǎn),所以選B.

11.如圖,設(shè),則,

       ,

       ,從而,因此與底面所成角的正弦值等于.所以選A.

12.分類涂色① 只用3種顏色,相對面同色,有1種涂法;② 用4種顏色,有種涂法;③ 用五種顏色,有種涂法.共有13種涂法.所以選C.

二、

13.7.由(舍去),

       項(xiàng)的余數(shù)為

14.依題設(shè),又,點(diǎn)所形成的平面區(qū)域?yàn)檫呴L為1的正方形,其面積為1.

15.,由,得

      

16.

      

如圖,可設(shè),又,

       當(dāng)面積最大時(shí),.點(diǎn)到直線的距離為

三、

17.(1)

             

              由

              的單調(diào)遞減區(qū)間為

       (2)

                  

                         

18.(1)的所有取值為0.8,0.9,1.0,1.125,1.25,其分布列為

0.8

0.9

1.0

1.125

1.25

0.2

0.15

0.35

0.15

0.15

              的所有取值為0.8,0.96,1.0,1,2,1.44,其分布列為     

0.8

0.96

1.0

1.2

1.44

0.3

0.2

0.18

0.24

0.08

(2)設(shè)實(shí)施方案一、方案二兩年后超過危機(jī)前出口額的概率為,,則

             

              ∴實(shí)施方案二兩年后超過危機(jī)前出口額的概率更大.

(3)方案一、方案二的預(yù)計(jì)利潤為,則   

10

15

20

0.35

0.35

0.3

      

10

15

20

0. 5

0.18

0.32

                  

∴實(shí)施方案一的平均利潤更大

19.(1)設(shè)交于點(diǎn)

             

             

             

              從而,即,又,且

              平面為正三角形,的中點(diǎn),

              ,且,因此,平面

       (2)平面,∴平面平面,∴平面平面

              設(shè)的中點(diǎn),連接,則,

              平面,過點(diǎn),連接,則

              為二面角的平面角.

              在中,

              又

20.(1)由,得,則

              又為正整數(shù),

             

              ,故

(2)

      

       ∴當(dāng)時(shí),取得最小值

21.(1)由

              ∴橢圓的方程為:

(2)由,

      

       又

設(shè)直線的方程為:

              由此得.                                   ①

              設(shè)與橢圓的交點(diǎn)為,則

              www.ks5u.com由

              ,整理得

              ,整理得

              時(shí),上式不成立,                ②

              由式①、②得

             

              ∴取值范圍是

22.(1)由

              令,則

              當(dāng)時(shí),上單調(diào)遞增.

                 的取值范圍是

       (2)

              ① 當(dāng)時(shí),是減函數(shù).

              時(shí),是增函數(shù).

② 當(dāng)時(shí),是增函數(shù).

綜上;當(dāng)時(shí),增區(qū)間為,,減區(qū)間為;

當(dāng)時(shí),增區(qū)間為

 


同步練習(xí)冊答案