解:(1)由已知得.而. 查看更多

 

題目列表(包括答案和解析)

已知條件p:|x-1|>a(a≥0)和條件q:lg(x2-3x+3)>0,
(1)求滿足條件p,q的不等式的解集.
(2)分別利用所給的兩個條件作為A,B構造命題:“若A,則B”,問是否存在非負實數a使得構造的原命題為真命題,而其逆命題為假命題,若存在,求出a的取值范圍.若不存在,請說明理由.

查看答案和解析>>

已知函數f(x)的圖象可由函數g(x)=
4x+m2
2x
(m為非零常數)
的圖象向右平移兩個單位而得到.
(1)寫出函數f(x)的解析式;
(2)證明函數f(x)的圖象關于直線y=x對稱;
(3)問:是否存在集合M,當x∈M時,函數f(x)的最大值為2+m2,最小值為2-
m2
9
;若存在,試求出一個集合M;若不存在,請說明理由.

查看答案和解析>>

已知,(其中

⑴求;

⑵試比較的大小,并說明理由.

【解析】第一問中取,則;                         …………1分

對等式兩邊求導,得

,則得到結論

第二問中,要比較的大小,即比較:的大小,歸納猜想可得結論當時,;

時,;

時,

猜想:當時,運用數學歸納法證明即可。

解:⑴取,則;                         …………1分

對等式兩邊求導,得

,則。       …………4分

⑵要比較的大小,即比較:的大小,

時,;

時,;

時,;                              …………6分

猜想:當時,,下面用數學歸納法證明:

由上述過程可知,時結論成立,

假設當時結論成立,即,

時,

時結論也成立,

∴當時,成立。                          …………11分

綜上得,當時,

時,;

時, 

 

查看答案和解析>>

已知正項數列的前n項和滿足:,

(1)求數列的通項和前n項和

(2)求數列的前n項和;

(3)證明:不等式  對任意的,都成立.

【解析】第一問中,由于所以

兩式作差,然后得到

從而得到結論

第二問中,利用裂項求和的思想得到結論。

第三問中,

       

結合放縮法得到。

解:(1)∵     ∴

      ∴

      ∴   ∴  ………2分

      又∵正項數列,∴           ∴ 

又n=1時,

   ∴數列是以1為首項,2為公差的等差數列……………3分

                             …………………4分

                   …………………5分 

(2)       …………………6分

    ∴

                          …………………9分

(3)

      …………………12分

        

   ∴不等式  對任意的,都成立.

 

查看答案和解析>>

已知數列滿足,

(1)求證:數列是等比數列;

(2)求數列的通項和前n項和

【解析】第一問中,利用,得到從而得證

第二問中,利用∴ ∴分組求和法得到結論。

解:(1)由題得 ………4分

                    ……………………5分

   ∴數列是以2為公比,2為首項的等比數列;   ……………………6分

(2)∴                                  ……………………8分

     ∴                                  ……………………9分

     ∴

 

查看答案和解析>>


同步練習冊答案