如圖.分別是橢圓的左右焦點(diǎn).M為橢圓上一點(diǎn).垂直于軸.且OM與橢圓長軸和短軸端點(diǎn)的連線AB平行.(Ⅰ)求橢圓的離心率, 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,點(diǎn)F是橢圓W:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn),A、B分別是橢圓的右頂點(diǎn)與上頂點(diǎn),橢圓的離心率為
1
2
,三角形ABF的面積為
3
3
2

(Ⅰ)求橢圓W的方程;
(Ⅱ)對(duì)于x軸上的點(diǎn)P(t,0),橢圓W上存在點(diǎn)Q,使得PQ⊥AQ,求實(shí)數(shù)t的取值范圍;
(Ⅲ)直線l:y=kx+m(k≠0)與橢圓W交于不同的兩點(diǎn)M、N (M、N異于橢圓的左右頂點(diǎn)),若以MN為直徑的圓過橢圓W的右頂點(diǎn)A,求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

如圖,點(diǎn)F是橢圓W:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn),A、B分別是橢圓的右頂點(diǎn)與上頂點(diǎn),橢圓的離心率為
1
2
,三角形ABF的面積為
3
3
2
,
(Ⅰ)求橢圓W的方程;
(Ⅱ)對(duì)于x軸上的點(diǎn)P(t,0),橢圓W上存在點(diǎn)Q,使得PQ⊥AQ,求實(shí)數(shù)t的取值范圍;
(Ⅲ)直線l:y=kx+m(k≠0)與橢圓W交于不同的兩點(diǎn)M、N(M、N異于橢圓的左右頂點(diǎn)),若以MN為直徑的圓過橢圓W的右頂點(diǎn)A,求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

精英家教網(wǎng)如圖,橢圓C:
x2
36
+
y2
20
=1
的左頂點(diǎn),右焦點(diǎn)分別為A,F(xiàn),直線l的方程x=9,N為l上位于x軸上方的一點(diǎn).
(1)設(shè)線段AN與橢圓C交于點(diǎn)M,且點(diǎn)M是線段AN的中點(diǎn),求證:MA⊥MF;
(2)過三點(diǎn)A,F(xiàn),N的圓與y軸交于P,Q兩點(diǎn),求線段PQ的長的取值范圍.

查看答案和解析>>

如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn)分別為F1,F(xiàn)2,短軸兩個(gè)端點(diǎn)分別為A,B,且四邊形F1AF2B是邊長為2 的正方形.
(1)求橢圓的方程;
(2)若C,D分別為長軸的左右端點(diǎn),O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M滿足MD⊥CD,連接CM,交橢圓于點(diǎn)P,判斷
OM
OP
是否為定值,若是,求出該定值,若不是,請(qǐng)說明理由.

查看答案和解析>>

如圖,橢圓C:
x2
a2
+
y2
a2-1
=1
的左右頂點(diǎn)分別為A、B,左右焦點(diǎn)分別為F1、F2,P為以F1、F2為直徑的圓上異于F1、F2的動(dòng)點(diǎn),直線PF1、PF2分別交橢圓C于M、N和D、E.
(1)證明:
AP
BP
為定值K;
(2)當(dāng)K=-2時(shí),問是否存在點(diǎn)P,使得四邊形DMEN的面積最小,若存在,求出最小值和P坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

Ⅰ 選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

A

 B

C

C

B

C

C

B

A

A

B

 

Ⅱ 非選擇題

二、13.         14.4          15.-2            16.①    

三、解答題:

17.(I)解:

    --------------------------4分

當(dāng),即時(shí),取得最大值.

因此,取得最大值的自變量x的集合是  -------8分

(Ⅱ)解:

由題意得,即.

因此,的單調(diào)增區(qū)間是.-------------------13分

18.⑴∵f (x) ≥x的解集為R

∴x2-(4a+1)x+a2≥0對(duì)于x∈R恒成立        -----------------------------------2分

∴△=(4a+1)24a2≤0

  即12 a28a+1≤0             --------------------------------------------------------4分

    (2a+1)(6a+1)≤0

∴?≤a≤?

∴a的取值范圍為[?,?]       ------------------------------------------------------6分

(2)∵,---------------------------------------------------------8分

的對(duì)稱軸,知單調(diào)遞增

處取得最小值,即---------------------------------------------------11分

    解得  ∵        ∴----------------------13分

19、解:由<0,得

(*)----------------------------------------------------------------------2分

⑴當(dāng) a>0時(shí),(*)等價(jià)于a>0時(shí),

∴不等式的解為:<x<1--------------------------------------------------------------------5分   

⑵當(dāng)a=0時(shí),(*)等價(jià)于<0即x<1----------------------------------------------------8分

⑶當(dāng)a<0時(shí),(*)等價(jià)于a<0時(shí),

∴   不等式的解為 : x<1或x>-----------------------------------------------------11分

綜上所述:當(dāng)a>0時(shí),不等式的解集為(,1);當(dāng)a=0時(shí),不等式的解集為

當(dāng)a<0時(shí),不等式的解集為∪(,)-------------------------------12分

20.

---------------------------------------------------------------------------------3分

---------------------------------------------------------------------7分

---------------------------------12分

21.解:(1)由已知

  ,

 

(2)

 橢圓的方程為

22.(1)證明:f(x+y)=f(x)+f(y)(x,y∈R),             ①

令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0.

令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,則有0=f(x)+f(-x).即f(-x)=-f(x)對(duì)任意x∈R成立,所以f(x)是奇函數(shù).---------------------------------------3分

(2)設(shè)

所以f(x)是增函數(shù).----------------------------------------------------6分

(3)解:∵由(2)知f(x) 在R上是單調(diào)增函數(shù),又由(1)f(x)是奇函數(shù).

f(k?3)<-f(3-9-2)=f(-3+9+2),  k?3<-3+9+2,

3-(1+k)?3+2>0對(duì)任意x∈R成立.

令t=3>0,問題等價(jià)于t-(1+k)t+2>0對(duì)任意t>0恒成立.

R恒成立.

---------------------------------------------------------------------------12分

 

 


同步練習(xí)冊(cè)答案