已知函數(shù)的圖象如圖所示.那么 A.a(chǎn)>0.b>o.c<0 B.a(chǎn)<0.b>o.c<0 C.a(chǎn)<0.b>o.c>0 D.a(chǎn)>0.b<0.c>0 - 查看更多

 

題目列表(包括答案和解析)

 已知函數(shù)的定義域為,部分對應(yīng)值如下表,

的導(dǎo)函數(shù)的圖象如圖所示.

下列關(guān)于的命題:

①函數(shù)的極大值點為,;

②函數(shù)上是減函數(shù);

③如果當(dāng)時,的最大值是2,那么的最大值為4;

④函數(shù)最多有2個零點.

其中正確命題的序號是     (       )

A、①②     B、③④     C、①②④      D、②③④.

 

查看答案和解析>>

已知函數(shù)的定義域為,部分對應(yīng)值如下表,

的導(dǎo)函數(shù)的圖象如圖所示. 下列關(guān)于的命題:

①函數(shù)的極大值點為,

②函數(shù)上是減函數(shù);

③如果當(dāng)時,的最大值是2,

那么的最大值為4;

④當(dāng)時,函數(shù)個零點;

⑤函數(shù)的零點個數(shù)可能為0、1、2、3、4個.其中正確命題的個數(shù)是

A.4                B.3                C.2                D.1

 

查看答案和解析>>

已知函數(shù)的定義域為,部分對應(yīng)值如下表.

的導(dǎo)函數(shù)的圖象如圖所示.

下列關(guān)于函數(shù)的命題:①函數(shù)是減函數(shù);

②如果當(dāng)時,的最大值是2,那么的最大值為4;

③當(dāng)時,函數(shù)有4個零點.

其中真命題的個數(shù)是

A.0個             B.3個              C. 2個             D.1個

 

查看答案和解析>>

已知函數(shù)的定義域為,部分對應(yīng)值如下表:

的導(dǎo)函數(shù)的圖象如圖所示,

則下列關(guān)于函數(shù)的命題:

① 函數(shù)是周期函數(shù);

② 函數(shù)是減函數(shù);

③ 如果當(dāng)時,的最大值是2,那么的最大值為4;

④ 當(dāng)時,函數(shù)有4個零點。

其中真命題的個數(shù)是 (    )

A.4個             B.3個              C.2個              D.1個

 

查看答案和解析>>

已知函數(shù)的定義域為,部分對應(yīng)值如下表.的導(dǎo)函數(shù)的圖象如圖所示.

-1

0

4

5

1

2

2

1

 

下列關(guān)于函數(shù)的命題:①函數(shù)是周期函數(shù);②函數(shù)是減函數(shù);③如果當(dāng)時,的最大值是2,那么的最大值為4;④當(dāng)時,函數(shù)有4個零點.其中真命題的個數(shù)有(    )

A.4個                B.3個            C.2個            D.1個

 

查看答案和解析>>

1、C  2、A  3、C  4、A  5、C  6、B  7、B  8、D  9、A  10、C  11、B  12、D

13、1.56   14、5   15、

 16、(1)斜面的中面面積等于斜面面積的四分之一;(2)三個直角面面積的平方和等于斜面面積的平方;(3)斜面與三個直角面所成二面角的余弦平方和等于1,等等

17、解: (Ⅰ)   =
  =   =   =

  (Ⅱ) ∵   ∴ ,
  又∵   ∴   當(dāng)且僅當(dāng) b=c=時,bc=,故bc的最大值是.

18、

19、(1)證明:底面           

          

平面平面

(2)解:因為,且,

      可求得點到平面的距離為

(3)解:作,連,則為二面角的平面角

      設(shè),在中,求得,

同理,,由余弦定理

解得, 即=1時,二面角的大小為

20、

21、解:設(shè)

由題意可得:

                                 

相減得:

                                 

∴直線的方程為,即

(2)設(shè),代入圓的方程整理得:

是上述方程的兩根

             

同理可得:     

.                             

22、解:(1)由題意,在[]上遞減,則解得  

所以,所求的區(qū)間為[-1,1]        

(2)取,即不是上的減函數(shù)

,

不是上的增函數(shù)

所以,函數(shù)在定義域內(nèi)不單調(diào)遞增或單調(diào)遞減,從而該函數(shù)不是閉函數(shù)

(3)若是閉函數(shù),則存在區(qū)間[],在區(qū)間[]上,函數(shù)的值域為[],即,為方程的兩個實數(shù)根,

即方程有兩個不等的實根

當(dāng)時,有,解得

當(dāng)時,有,無解

綜上所述,

 

 

 


同步練習(xí)冊答案