A. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)A.(選修4-4坐標(biāo)系與參數(shù)方程)已知點(diǎn)A是曲線ρ=2sinθ上任意一點(diǎn),則點(diǎn)A到直線ρsin(θ+
π3
)=4
的距離的最小值是
 

B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
 

C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長(zhǎng)AO到D點(diǎn),則△ABD的面積是
 

查看答案和解析>>

精英家教網(wǎng)A.(不等式選做題)若關(guān)于x的不等式|x+3|-|x+2|≥log2a有解,則實(shí)數(shù)a的取值范圍是:
 

B.(幾何證明選做題)如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長(zhǎng)AB和DC相交于點(diǎn)P.若
PB
PA
=
1
2
,
PC
PD
=
1
3
,則
BC
AD
的值為
 

C.(坐標(biāo)系與參數(shù)方程選做題)設(shè)曲線C的參數(shù)方程為
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ=
2
cosθ-sinθ
,則曲線C上到直線l距離為
2
的點(diǎn)的個(gè)數(shù)為:
 

查看答案和解析>>

精英家教網(wǎng)A.(不等式選做題)
函數(shù)f(x)=x2-x-a2+a+1對(duì)于任一實(shí)數(shù)x,均有f(x)≥0.則實(shí)數(shù)a滿足的條件是
 

B.(幾何證明選做題)
如圖,圓O是△ABC的外接圓,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,CD=2
3
,AB=BC=4,則AC的長(zhǎng)為
 

C.(坐標(biāo)系與參數(shù)方程選做題)
在極坐標(biāo)系中,曲線ρ=4cos(θ-
π
3
)
上任意兩點(diǎn)間的距離的最大值為
 

查看答案和解析>>

精英家教網(wǎng)A.不等式
x-2
x2+3x+2
>0
的解集是
 

B.如圖,AB是⊙O的直徑,P是AB延長(zhǎng)線上的一點(diǎn),過(guò)P作⊙O的切線,切點(diǎn)為CPC=2
3
,若∠CAP=30°,則⊙O的直徑AB=
 

C.(極坐標(biāo)系與參數(shù)方程選做題)若圓C:
x=1+
2
cosθ
y=2+
2
sinθ
(θ為參數(shù))
與直線x-y+m=0相切,則m=
 

查看答案和解析>>

精英家教網(wǎng)A.(不等式選做題)不等式|3x-6|-|x-4|>2x的解集為
 


B.(幾何證明選做題)如圖,直線PC與圓O相切于點(diǎn)C,割線PAB經(jīng)過(guò)圓心O,
弦CD⊥AB于點(diǎn)E,PC=4,PB=8,則CE=
 

C.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=4cosθ的圓心到直線ρsin(θ+
π
4
)=2
2
的距離為
 

查看答案和解析>>

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

C

B

A

D

B

A

A

C

C

D

D

12.提示:由于是中點(diǎn),中,,,

所以,所以

二、填空題

13.    14.  52    15.      16. 18

16.提示:由可得,則,所以,所以,,所以;當(dāng)且僅當(dāng)時(shí)成立

三、解答題

17.解:由

      (3分)

             (6分)

(2)由(1)知      (8分)

   (10分)

                          (13分)

18.解:,    (2分)

,得     (4分)

                   (5分)

由于,于是有:

(1)當(dāng)時(shí),不等式的解集為      (8分)

(2)當(dāng)時(shí),不等式的解集為         (11分)

(3)當(dāng)時(shí),不等式的解集為             (13分)

19.解:(Ⅰ)由成等差數(shù)列,

,        (2分)

         (5分)

(Ⅱ) (7分)

         (9分)

             (11分)

     (12分)

20.解:(1)由題,         (2分)

等差數(shù)列的公差       (4分)

     (5分)

(2)

      ①

    ②       (7分)

則②-①可得:

    (9分)

                     (11分)

                 (12分)

 

21.解:(1)由為奇函數(shù),則,所以,得:   (3分)

(2)由(1)可知           (5分)

, 

所以              (7分)

(3)由得:

          (8分)

  

下求:令, 由于

         (10分)

當(dāng)時(shí),均遞增,所以遞增,

所以當(dāng)時(shí)取最大值為       所以           (12分)

22.解:(Ⅰ)     (1分)

當(dāng)時(shí),

,即是等比數(shù)列.                 (3分)

 ∴;                          (4分)

(Ⅱ)由(Ⅰ)知,,若為等比數(shù)列,

 則有

,解得,  

再將代入得成立,

所以.                                    (8分)

(III)證明:由(Ⅱ)知,所以

,   

所以,      

從而

.                            (12分)

 


同步練習(xí)冊(cè)答案