通過探究對數(shù)的概念以及對數(shù)式和諧數(shù)式之間的關(guān)系.明確數(shù)學(xué)概念的嚴(yán)謹(jǐn)性和科學(xué)性.感受化歸的數(shù)學(xué)思想.培養(yǎng)學(xué)生數(shù)學(xué)地分析問題的意識. 查看更多

 

題目列表(包括答案和解析)

(1)對數(shù)的概念:如果ab=N(a>0,a≠1),那么冪指數(shù)b叫做以a為底數(shù)N的對數(shù),記作     ,其中a叫做底數(shù),N叫做     .?

(2)積、商、冪、方根的對數(shù)(M,N都是正數(shù),a>0,且a≠1,n≠0).?

=     ;?

=     ;?

=     ;?

(3)對數(shù)的換底公式及對數(shù)恒等式(供選用).?

=     (對數(shù)恒等式);?

=     ;?

(換底公式);?

;?

.?

(4)指數(shù)式與對數(shù)式的關(guān)系如下表:

 

 

式子

名稱

 

 

a

b

N

指數(shù)式

ab=N

 

 

 

對數(shù)式

logaN=b

 

 

 

 

查看答案和解析>>

通過研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生的接受能力依賴于教師引入概念和描述問題所用的時(shí)間.講座開始時(shí),學(xué)生的興趣激增;中間有一段不太長的時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散.分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生的接受能力,x表示引入概念和描述問題所用的時(shí)間(單位:分鐘),可有以下的公式:
f(x)=
-0.1x2+2.6x+43,0<x≤10
59,10<x≤16
-3x+107,16<x≤30.

(1)開講后多少分鐘,學(xué)生的接受能力最強(qiáng)?能維持多長時(shí)間?
(2)一道數(shù)學(xué)難題,需要55的接受能力以及13分鐘,教師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這道難題?

查看答案和解析>>

(2013•懷化三模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點(diǎn)(
3
,
3
2
)
,離心率e=
1
2
,若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
x0
a
,
y0
b
)
稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

今年的國慶假期是實(shí)施免收小型客車高速通行費(fèi)后的第一個(gè)重大節(jié)假日,有一個(gè)群名為“天狼星”的自駕游車隊(duì).該車隊(duì)是由31輛車身長都約為5m(以5m計(jì)算)的同一車型組成的,行程中經(jīng)過一個(gè)長為2725m的隧道(通過該隧道的車速不能超過25m/s),勻
速通過該隧道,設(shè)車隊(duì)的速度為xm/s,根據(jù)安全和車流的需要,當(dāng)0<x≤2時(shí),相鄰兩車之間保持20m的距離;當(dāng)12<x≤25時(shí),相鄰兩車之間保持(
1
6
x2+
1
3
x
)m的距離.自第1輛車車頭進(jìn)入隧道至第31輛車車尾離開隧道所用的時(shí)間為y(s).
(1)將y表示為x的函數(shù);
(2)求該車隊(duì)通過隧道時(shí)間y的最小值及此時(shí)車隊(duì)的速度.

查看答案和解析>>

已知函數(shù)f(x)=ex(ax+1)(e為自然對數(shù)的底,a∈R為常數(shù)).對于函數(shù)h(x)和g(x),若存在常數(shù)k,m,對于任意x∈R,不等式h(x)≥kx+m≥g(x)都成立,則稱直線y=kx+m是函數(shù)h(x),g(x)的分界線.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)設(shè)a=1,試探究函數(shù)f(x)與函數(shù)g(x)=-x2+2x+1是否存在“分界線”?若存在,求出分界線方程;若不存在,試說明理由.

查看答案和解析>>


同步練習(xí)冊答案