由已知易求 查看更多

 

題目列表(包括答案和解析)

已知

(1)求函數(shù)上的最小值

(2)對一切的恒成立,求實數(shù)a的取值范圍

(3)證明對一切,都有成立

【解析】第一問中利用

當(dāng)時,單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,,

第二問中,,則設(shè),

,單調(diào)遞增,,,單調(diào)遞減,,因為對一切恒成立, 

第三問中問題等價于證明,

由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時取得

設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立

解:(1)當(dāng)時,單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,,

                 …………4分

(2),則設(shè),

,單調(diào)遞增,,單調(diào)遞減,,因為對一切,恒成立,                                             …………9分

(3)問題等價于證明,,

由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時取得

設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立

 

查看答案和解析>>

已知函數(shù),其中.

  (1)若處取得極值,求曲線在點處的切線方程;

  (2)討論函數(shù)的單調(diào)性;

  (3)若函數(shù)上的最小值為2,求的取值范圍.

【解析】第一問,處取得極值

所以,,解得,此時,可得求曲線在點

處的切線方程為:

第二問中,易得的分母大于零,

①當(dāng)時, ,函數(shù)上單調(diào)遞增;

②當(dāng)時,由可得,由解得

第三問,當(dāng)時由(2)可知,上處取得最小值,

當(dāng)時由(2)可知處取得最小值,不符合題意.

綜上,函數(shù)上的最小值為2時,求的取值范圍是

 

查看答案和解析>>

閱讀下面一段文字:已知數(shù)列{an}的首項a1=1,如果當(dāng)n≥2時,an-an-1=2,則易知通項an=2n-1,前n項的和Sn=n2.將此命題中的“等號”改為“大于號”,我們得到:數(shù)列{an}的首項a1=1,如果當(dāng)n≥2時,an-an-1>2,那么an>2n-1,且Sn>n2.這種從“等”到“不等”的類比很有趣.由此還可以思考:要證Sn>n2,可以先證an>2n-1,而要證an>2n-1,只需證an-an-1>2(n≥2).結(jié)合以上思想方法,完成下題:
已知函數(shù)f(x)=x3+1,數(shù)列{an}滿足a1=1,an+1=f(an),若數(shù)列{an}的前n項的和為Sn,求證:Sn≥2n-1.

查看答案和解析>>

閱讀下面一段文字:已知數(shù)列{an}的首項a1=1,如果當(dāng)n≥2時,an-an-1=2,則易知通項an=2n-1,前n項的和Sn=n2.將此命題中的“等號”改為“大于號”,我們得到:數(shù)列{an}的首項a1=1,如果當(dāng)n≥2時,an-an-1>2,那么an>2n-1,且Sn>n2.這種從“等”到“不等”的類比很有趣.由此還可以思考:要證Sn>n2,可以先證an>2n-1,而要證an>2n-1,只需證an-an-1>2(n≥2).結(jié)合以上思想方法,完成下題:
已知函數(shù)f(x)=x3+1,數(shù)列{an}滿足a1=1,an+1=f(an),若數(shù)列{an}的前n項的和為Sn,求證:Sn≥2n-1.

查看答案和解析>>

閱讀下面一段文字:已知數(shù)列{an}的首項a1=1,如果當(dāng)n≥2時,an-an-1=2,則易知通項an=2n-1,前n項的和Sn=n2.將此命題中的“等號”改為“大于號”,我們得到:數(shù)列{an}的首項a1=1,如果當(dāng)n≥2時,an-an-1>2,那么an>2n-1,且Sn>n2.這種從“等”到“不等”的類比很有趣.由此還可以思考:要證Sn>n2,可以先證an>2n-1,而要證an>2n-1,只需證an-an-1>2(n≥2).結(jié)合以上思想方法,完成下題:
已知函數(shù)f(x)=x3+1,數(shù)列{an}滿足a1=1,an+1=f(an),若數(shù)列{an}的前n項的和為Sn,求證:Sn≥2n-1.

查看答案和解析>>


同步練習(xí)冊答案