閱讀下面一段文字:已知數(shù)列{an}的首項(xiàng)a1=1,如果當(dāng)n≥2時,an-an-1=2,則易知通項(xiàng)an=2n-1,前n項(xiàng)的和Sn=n2.將此命題中的“等號”改為“大于號”,我們得到:數(shù)列{an}的首項(xiàng)a1=1,如果當(dāng)n≥2時,an-an-1>2,那么an>2n-1,且Sn>n2.這種從“等”到“不等”的類比很有趣.由此還可以思考:要證Sn>n2,可以先證an>2n-1,而要證an>2n-1,只需證an-an-1>2(n≥2).結(jié)合以上思想方法,完成下題:
已知函數(shù)f(x)=x3+1,數(shù)列{an}滿足a1=1,an+1=f(an),若數(shù)列{an}的前n項(xiàng)的和為Sn,求證:Sn≥2n-1.
【答案】分析:本題考查的知識點(diǎn)是類比推理,由命題中的“等號”性質(zhì),類比推理出”“大于號”的性質(zhì).由a1=1,an+1=an3+1,an≥1.得出:an+1=an3+1≥an2+1≥2an,從而,得到an≥2n-1,最后利用等比數(shù)列的求和公式即可證得結(jié)論.
解答:解:∵a1=1,an+1=an3+1,an≥1.…4′
∴有:an+1=an3+1≥an2+1≥2an,
.…8′
,
即an≥2n-1.…11′

∴Sn≥2n-1成立.…14′
點(diǎn)評:類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面一段文字:已知數(shù)列{an}的首項(xiàng)a1=1,如果當(dāng)n≥2時,an-an-1=2,則易知通項(xiàng)an=2n-1,前n項(xiàng)的和Sn=n2.將此命題中的“等號”改為“大于號”,我們得到:數(shù)列{an}的首項(xiàng)a1=1,如果當(dāng)n≥2時,an-an-1>2,那么an>2n-1,且Sn>n2.這種從“等”到“不等”的類比很有趣.由此還可以思考:要證Sn>n2,可以先證an>2n-1,而要證an>2n-1,只需證an-an-1>2(n≥2).結(jié)合以上思想方法,完成下題:
已知函數(shù)f(x)=x3+1,數(shù)列{an}滿足a1=1,an+1=f(an),若數(shù)列{an}的前n項(xiàng)的和為Sn,求證:Sn≥2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下面一段文字:已知數(shù)列{an}的首項(xiàng)a1=1,如果當(dāng)n≥2時,an-an-1=2,則易知通項(xiàng)an=2n-1,前n項(xiàng)的和Sn=n2.將此命題中的“等號”改為“大于號”,我們得到:數(shù)列{an}的首項(xiàng)a1=1,如果當(dāng)n≥2時,an-an-1>2,那么an>2n-1,且Sn>n2.這種從“等”到“不等”的類比很有趣.由此還可以思考:要證Sn>n2,可以先證an>2n-1,而要證an>2n-1,只需證an-an-1>2(n≥2).結(jié)合以上思想方法,完成下題:
已知函數(shù)f(x)=x3+1,數(shù)列{an}滿足a1=1,an+1=f(an),若數(shù)列{an}的前n項(xiàng)的和為Sn,求證:Sn≥2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

(本小題滿分14分)

閱讀下面一段文字:已知數(shù)列的首項(xiàng),如果當(dāng)時,,則易知通項(xiàng),前項(xiàng)的和. 將此命題中的“等號”改為“大于號”,我們得到:數(shù)列的首項(xiàng),如果當(dāng)時,,那么,且. 這種從“等”到“不等”的類比很有趣。由此還可以思考:要證,可以先證,而要證,只需證). 結(jié)合以上思想方法,完成下題:

已知函數(shù),數(shù)列滿足,,若數(shù)列的前項(xiàng)的和為,求證:.

查看答案和解析>>

同步練習(xí)冊答案