∴動點M的軌跡是以(2.0)為焦點.為準(zhǔn)線的拋物線.且. 查看更多

 

題目列表(包括答案和解析)

已知F1(-1,0)、F2(1,0),圓F2:(x-1)2+y2=1,一動圓在y軸右側(cè)與y軸相切,同時與圓F2相外切,此動圓的圓心軌跡為曲線C,曲線E是以F1,F(xiàn)2為焦點的橢圓.
(1)求曲線C的方程;
(2)設(shè)曲線C與曲線E相交于第一象限點P,且|PF1|=
73
,求曲線E的標(biāo)準(zhǔn)方程;
(3)在(1)、(2)的條件下,直線l與橢圓E相交于A,B兩點,若AB的中點M在曲線C上,求直線l的斜率k的取值范圍.

查看答案和解析>>

已知F1(-1,0)、F2(1,0),圓F2:(x-1)2+y2=1,一動圓在y軸右側(cè)與y軸相切,同時與圓F2相外切,此動圓的圓心軌跡為曲線C,曲線E是以F1,F(xiàn)2為焦點的橢圓.
(1)求曲線C的方程;
(2)設(shè)曲線C與曲線E相交于第一象限點P,且,求曲線E的標(biāo)準(zhǔn)方程;
(3)在(1)、(2)的條件下,直線l與橢圓E相交于A,B兩點,若AB的中點M在曲線C上,求直線l的斜率k的取值范圍.

查看答案和解析>>

已知兩點M(-2,0),N(2,0),動點P(x,y)在y軸上的射影為H,是2和的等比中項.
(I)求動點P的軌跡方程;
(II)若以點M、N為焦點的雙曲線C過直線x+y=1上的點Q,求實軸最長的雙曲線C的方程.

查看答案和解析>>

已知定點A(1,0),定直線l:x=5,動點M(x,y)
(1)若M到點A的距離與M到直線l的距離之比為
5
5
,試求M的軌跡曲線C1的方程;
(2)若曲線C2是以C1的焦點為頂點,且以C1的頂點為焦點,試求曲線C2的方程;
(3)是否存在過點F(
5
,0)的直線m,使其與曲線C2交得弦|PQ|長度為8呢?若存在,則求出直線m的方程;若不存在,試說明理由.

查看答案和解析>>

已知定點A(1,0),定直線l:x=5,動點M(x,y)
(1)若M到點A的距離與M到直線l的距離之比為
5
5
,試求M的軌跡曲線C1的方程;
(2)若曲線C2是以C1的焦點為頂點,且以C1的頂點為焦點,試求曲線C2的方程;
(3)是否存在過點F(
5
,0)的直線m,使其與曲線C2交得弦|PQ|長度為8呢?若存在,則求出直線m的方程;若不存在,試說明理由.

查看答案和解析>>


同步練習(xí)冊答案