已知F1(-1,0)、F2(1,0),圓F2:(x-1)2+y2=1,一動(dòng)圓在y軸右側(cè)與y軸相切,同時(shí)與圓F2相外切,此動(dòng)圓的圓心軌跡為曲線C,曲線E是以F1,F(xiàn)2為焦點(diǎn)的橢圓.
(1)求曲線C的方程;
(2)設(shè)曲線C與曲線E相交于第一象限點(diǎn)P,且|PF1|=
73
,求曲線E的標(biāo)準(zhǔn)方程;
(3)在(1)、(2)的條件下,直線l與橢圓E相交于A,B兩點(diǎn),若AB的中點(diǎn)M在曲線C上,求直線l的斜率k的取值范圍.
分析:(1)設(shè)動(dòng)圓圓心的坐標(biāo)為(x,y)(x>0),由動(dòng)圓在y軸右側(cè)與y軸相切,同時(shí)與圓F2相外切,知|CF2|-x=1,由此能求出曲線C的方程.
(2)依題意,c=1,|PF1|=
7
3
,得xp=
2
3
,由此能求出曲線E的標(biāo)準(zhǔn)方程.
(3)設(shè)直線l與橢圓E交點(diǎn)A(x1,y1),B(x2,y2),A,B的中點(diǎn)M的坐標(biāo)為(x0,y0),將A,B的坐標(biāo)代入橢圓方程中,得3(x1-x2)(x1+x2)+4(y1-y2)(y1+y2)=0,由此能夠求出直線l的斜率k的取值范圍.
解答:解:(1)設(shè)動(dòng)圓圓心的坐標(biāo)為(x,y)(x>0)
因?yàn)閯?dòng)圓在y軸右側(cè)與y軸相切,同時(shí)與圓F2相外切,
所以|CF2|-x=1,…(1分)
(x-1)2+y2
=x+1

化簡(jiǎn)整理得y2=4x,曲線C的方程為y2=4x(x>0); …(3分)
(2)依題意,c=1,|PF1|=
7
3
,
xp=
2
3
,…(4分)
|PF2|=
5
3
,
又由橢圓定義得2a=|PF1|+|PF2|=
7
3
+
5
3
=4,a=2
.…(5分)
∴b2=a2-c2=3,所以曲線E的標(biāo)準(zhǔn)方程為
x2
4
+
y2
3
=1
.…(6分)
(3)設(shè)直線l與橢圓E交點(diǎn)A(x1,y1),B(x2,y2),
A,B的中點(diǎn)M的坐標(biāo)為(x0,y0),
將A,B的坐標(biāo)代入橢圓方程中,
3x12+4y12-12=0
3x22+4y22-12=0
,
兩式相減得3(x1-x2)(x1+x2)+4(y1-y2)(y1+y2)=0,
y1-y2
x1-x2
=-
3x0
4y0
,…(7分)
y02=4x0,
∴直線AB的斜率k=
y1-y2
x1-x2
=-
3
16
y0
,…(8分)
由(2)知xp=
2
3

yp2=4xp=
8
3
,∴yp
2
6
3

由題設(shè)-
2
6
3
y0
2
6
3
(y0≠0)
,
-
6
8
<-
3
16
y0
6
8
,…(10分)
-
6
8
<k<
6
8
(k≠0).…(12分)
點(diǎn)評(píng):本題考查曲線方程的求法,考查直線的斜率的取值范圍的求法,解題時(shí)要認(rèn)真審題,注意點(diǎn)差法和等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1(-1,0),F(xiàn)2(1,0),A(
1
2
,0),動(dòng)點(diǎn)P滿足3
PF1
PA
+
PF2
PA
=0.
(1)求動(dòng)點(diǎn)P的軌跡方程.
(2)是否存在點(diǎn)P,使PA成為∠F1PF2的平分線?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1(-1,0),F(xiàn)2(1,0),點(diǎn)p滿足|
PF
1
|+|
PF
2
|=2
2
,記點(diǎn)P的軌跡為E.
(Ⅰ)求軌跡E的方程;
(Ⅱ)過點(diǎn)F2(1,0)作直線l與軌跡E交于不同的兩點(diǎn)A、B,設(shè)
F2A
F2B
,T(2,0),,若λ∈[-2,-1],求|
TA
+
TB
|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1(-1,0),F(xiàn)2(1,0)為橢圓
x2
a2
+
y2
b2
=1
的兩個(gè)焦點(diǎn),若橢圓上一點(diǎn)P滿足|
PF1
|+|
PF2
|=4
,則橢圓的離心率e=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1(-1,0)、F2(1,0)為橢圓的焦點(diǎn),且直線x+y-
7
=0
與橢圓相切.
(Ⅰ)求橢圓方程;
(Ⅱ)過F1的直線交橢圓于A、B兩點(diǎn),求△ABF2的面積S的最大值,并求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1(-1,0),F(xiàn)2(1,0)是橢圓
x2
a2
+
y2
b2
=1的兩個(gè)焦點(diǎn),點(diǎn)G與F2關(guān)于直線l:x-2y+4=0對(duì)稱,且GF1與l的交點(diǎn)P在橢圓上.
(I)求橢圓方程;
(II)若P、M(x1,y1),N(x2,y2)是橢圓上的不同三點(diǎn),直線PM、PN的傾斜角互補(bǔ),問直線MN的斜率是否是定值?如果是,求出該定值,如果不是,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案