題目列表(包括答案和解析)
lnx | x-1 |
π |
3 |
3 |
x | 0 |
5π |
12 |
已知f(x)=在區(qū)間[-1,1]上是增函數(shù).
(Ⅰ)求實(shí)數(shù)a的值組成的集合A;
(Ⅱ)設(shè)關(guān)于x的方程f(x)=的兩個(gè)非零實(shí)根為x1、x2.試問:是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說明理由.
已知f(x)=(x∈R)在區(qū)間[-1,1]上是增函數(shù).
(1)求實(shí)數(shù)a的值組成的集合A;
(2)設(shè)關(guān)于x的方程f(x)=的兩個(gè)非零實(shí)根為x1、x2.試問:是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說明理由.
一:選擇題
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
D
B
B
B
B
D
B
D
C
C
A
二、填空題:
13、0
14、
15、
16、①②
三、解答題:
17、(Ⅰ)∵
∴的最大值為,最小正周期是!6分
注:得出表達(dá)式的簡化形式得4分,最大值、周期各得1分。
(Ⅱ)由(Ⅰ)知
即成立的的取值集合是………10分
注:正確寫出正弦的單調(diào)增區(qū)間2分,答案正確2分。
18、解:(Ⅰ),
,
隨機(jī)變量的分布列為
0
1
2
3
P
數(shù)學(xué)期望………………………………………8分
注:每個(gè)概率算對(duì)得1分,分布列2分,期望2分。
(II)所求的概率…………12分
注:知道概率加法公式得2分,結(jié)果正確得2分。
19、(本題滿分12分)
證明:(1)在直三棱柱,
∵底面三邊長,,
∴ , --------------------------------1分
又直三棱柱中 ,
且
∴ ---------------------------------3分
而
∴; ---------------------------------4分
(2)設(shè)與的交點(diǎn)為,連結(jié),---------------------5分
∵D是AB的中點(diǎn),E是BC1的中點(diǎn),
∴ , ----------------------------7分
∵ ,,
∴ . ----------------------------8分
(3)過點(diǎn)C作CF⊥AB于F,連接C
由已知C1C垂直平面ABC,則∠C1FC為二面角的平面角 ----------9分
在Rt△ABC中,,,,則 ----------10分
又
∴ ----------11分
∴二面角的正切值為 ---------- 12分
(另:可以建立空間直角坐標(biāo)系用向量方法完成,酌情給分,過程略)
20、解(1)
∵在增函數(shù),(0,2)為減函數(shù)
………………………………………………2分
(2), ………………… 4分
5分
……………………7分
(3)
,
……………………………………………………………………12分
21、 解:(1)f(x)對(duì)任意
2分
令
4分
(2)解:數(shù)列{an}是等差數(shù)列 f(x)對(duì)任意x∈R都有
則令 5分
∴{an}是等差數(shù)列 8分
(3)解:由(2)有 9分
∴Tn≤Sn 該題也可用數(shù)學(xué)歸納法做。 12分
22、解:(1)∵
∴線段NP是AM的垂直平分線, 2分
∴ 3分
∵
∴點(diǎn)N的軌跡是以點(diǎn)C、A為焦點(diǎn)的橢圓; 4分
∴點(diǎn)N的軌跡E的方程是 5分
(2)當(dāng)直線的斜率不存在時(shí),,,∴=; 6分
當(dāng)直線的斜率存在時(shí),設(shè)其方程為,
,△, 7分
設(shè)G(x1,y1),H(x2,y2)
,,∵,∴ 8分
,, 9分
,,, 10分
,
∵點(diǎn)在點(diǎn)、之間 , ∴<1 11分
∴的取值范圍是[)。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com