已知f(x)=(x∈R)在區(qū)間[-1,1]上是增函數(shù).

(1)求實(shí)數(shù)a的值組成的集合A;

(2)設(shè)關(guān)于x的方程f(x)=的兩個(gè)非零實(shí)根為x1、x2.試問:是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說明理由.

 

【答案】

(1)A={a|-1≤a≤1}. (2){m|m≥2,或m≤-2}.)

【解析】

試題分析:(1)f'(x)== ,

∵f(x)在[-1,1]上是增函數(shù),∴f'(x)≤0對(duì)x∈[-1,1]恒成立,

即x2-ax-2≤0對(duì)x∈[-1,1]恒成立.       ①

設(shè)(x)=x2-ax-2,

① -1≤a≤1,

∵對(duì)x∈[-1,1],f(x)是連續(xù)函數(shù),且只有當(dāng)a=1時(shí),f'(-1)=0以及當(dāng)a=-1時(shí),f'(1)=0

∴A={a|-1≤a≤1}.                        -6分

(2)由=,得x2-ax-2=0,  ∵△=a2+8>0

∴x1,x2是方程x2-ax-2=0的兩實(shí)根,

從而|x1-x2|==.

∵-1≤a≤1,∴|x1-x2|=≤3.                10分

要使不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立,

當(dāng)且僅當(dāng)m2+tm+1≥3對(duì)任意t∈[-1,1]恒成立,

即m2+tm-2≥0對(duì)任意t∈[-1,1]恒成立.       ②

設(shè)g(t)=m2+tm-2=mt+(m2-2),

(方法一:)

m≥2或m≤-2.

所以,存在實(shí)數(shù)m,使不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立,其取值范圍是{m|m≥2,或m≤-2}.                      --14分

(注:方法二: 當(dāng)m=0時(shí),②顯然不成立;  當(dāng)m≠0時(shí),

  m≥2或m≤-2.

所以,存在實(shí)數(shù)m,使不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立,

其取值范圍是{m|m≥2,或m≤-2}.)

考點(diǎn):本題主要考查集合的概念,應(yīng)用導(dǎo)數(shù)研究函數(shù)的性質(zhì)、方程的根,不等式恒成立問題。

點(diǎn)評(píng):難題,在某區(qū)間,導(dǎo)函數(shù)值非負(fù),則函數(shù)為增函數(shù);導(dǎo)函數(shù)值非正,則函數(shù)為減函數(shù)。通過研究函數(shù)的圖象和性質(zhì),進(jìn)一步研究方程有實(shí)根的情況,這是函數(shù)與方程思想的靈活應(yīng)用。不等式恒成立問題,一般的要轉(zhuǎn)化成求函數(shù)的最值問題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x+
bx
-3, x∈[1,2]

(1) b=2時(shí),求f(x)的值域;
(2) b≥2時(shí),f(x)的最大值為M,最小值為m,且滿足:M-m≥4,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
)
,則下列結(jié)論中正確的是( 。
A、函數(shù)y=f(x)•g(x)的最大值為1
B、函數(shù)y=f(x)•g(x)的對(duì)稱中心是(
2
+
π
4
,0),k∈Z
C、當(dāng)x∈[-
π
2
π
2
]
時(shí),函數(shù)y=f(x)•g(x)單調(diào)遞增
D、將f(x)的圖象向右平移
π
2
單位后得g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
x+1,x∈[-1,0)
x2+1,x∈[0,1]
,則下列函數(shù)的圖象錯(cuò)誤的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學(xué)公式,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學(xué)公式上的值域?yàn)?img class='latex' alt='數(shù)學(xué)公式' src='http://thumb.zyjl.cn/pic5/latex/769.png' />,若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識(shí)訓(xùn)練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214609557716869/SYS201310232146095577168019_ST/2.png">,若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案