(2)該選手在選拔過程中回答過的問題的總個數(shù)記為,求隨機(jī)變量的分布列與數(shù)學(xué)期望. 查看更多

 

題目列表(包括答案和解析)

在一個選拔項目中,每個選手都需要進(jìn)行4輪考核,每輪設(shè)有一個問題,能正確回答者進(jìn)入下一輪考核,否則被淘汰.已知某選手能正確回答第一、二、三、四輪問題的概率分別為數(shù)學(xué)公式、數(shù)學(xué)公式、數(shù)學(xué)公式、數(shù)學(xué)公式,且各輪問題能否正確回答互不影響.
(Ⅰ)求該選手進(jìn)入第三輪才被淘汰的概率;
(Ⅱ)求該選手至多進(jìn)入第三輪考核的概率;
(Ⅲ)該選手在選拔過程中回答過的問題的個數(shù)記為X,求隨機(jī)變量X的分布列和期望.

查看答案和解析>>

在一個選拔項目中,每個選手都需要進(jìn)行4輪考核,每輪考核都設(shè)有一個問題,能正確回答者進(jìn)入下一輪考核,否則被淘汰,已知某選手能正確回答第一、二、三、四輪問題的概率分別為,且各輪問題能否正確回答互不影響。
(1)求該選手進(jìn)入第三輪考核才被淘汰的概率;
(2)求該選手至多進(jìn)入第三輪考核的概率;
(3)該選手在選拔過程中回答過的問題的個數(shù)記為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望。

查看答案和解析>>

在一個選拔項目中,每個選手都需要進(jìn)行4輪考核,每輪設(shè)有一個問題,能正確回答者進(jìn)入下一輪考核,否則被淘汰.已知某選手能正確回答第一、二、三、四輪問題的概率分別為、、、,且各輪問題能否正確回答互不影響.
(Ⅰ)求該選手進(jìn)入第三輪才被淘汰的概率;
(Ⅱ)求該選手至多進(jìn)入第三輪考核的概率;
(Ⅲ)該選手在選拔過程中回答過的問題的個數(shù)記為X,求隨機(jī)變量X的分布列和期望.

查看答案和解析>>

在一個選拔項目中,每個選手都需要進(jìn)行4輪考核,每輪設(shè)有一個問題,能正確回答者進(jìn)入下一輪考核,否則被淘汰.已知某選手能正確回答第一、二、三、四輪問題的概率分別為、、,且各輪問題能否正確回答互不影響.
(Ⅰ)求該選手進(jìn)入第三輪才被淘汰的概率;
(Ⅱ)求該選手至多進(jìn)入第三輪考核的概率;
(Ⅲ)該選手在選拔過程中回答過的問題的個數(shù)記為X,求隨機(jī)變量X的分布列和期望.

查看答案和解析>>

在一個選拔項目中,每個選手都需要進(jìn)行4輪考核,每輪設(shè)有一個問題,能正確回答者進(jìn)入下一輪考核,否則被淘汰.已知某選手能正確回答第一、二、三、四輪問題的概率分別為、、、,且各輪問題能否正確回答互不影響.
(Ⅰ)求該選手進(jìn)入第三輪才被淘汰的概率;
(Ⅱ)求該選手至多進(jìn)入第三輪考核的概率;
(Ⅲ)該選手在選拔過程中回答過的問題的個數(shù)記為X,求隨機(jī)變量X的分布列和期望.

查看答案和解析>>

且當(dāng)時,.當(dāng)時,.  …………………………10分學(xué)科網(wǎng)(Zxxk.Com)

結(jié)合圖象可知所求的取值范圍為. ……………………………………12分學(xué)科網(wǎng)(Zxxk.Com)

17.解:(1)記“該選手能正確回答第輪問題”的事件為,

.

該選手進(jìn)入第四輪才被淘汰的概率:    

.……………6分

 (2)由題意的所有可能取值分別是1, 2, 3, 4,且

,

學(xué)科網(wǎng)(Zxxk.Com)

方法二: 連AC,BD交于O點,連GO,FO,EO.

∵E,F分別為PC,PD的中點,

//,同理//

//AB,//

平面EFG//平面PAB.

又PA平面PAB,平面EFG.………………………………………4分

(2)由已知底面ABCD是正方形, .

又∵面ABCD,

,平面PCD,.

過點F作,則.

連結(jié),則為直線與平面所成的角. …………………6分

,得.在中求得.

學(xué)科網(wǎng)(Zxxk.Com)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, ,.

.即動點的軌跡的方程為.…………4分

(2)設(shè)點6ec8aac122bd4f6e,6ec8aac122bd4f6e,6ec8aac122bd4f6e.

三點共線,6ec8aac122bd4f6e,即6ec8aac122bd4f6e.

6ec8aac122bd4f6e.   ………………………………………6分

三點共線,6ec8aac122bd4f6e,即6ec8aac122bd4f6e.

6ec8aac122bd4f6e,即6ec8aac122bd4f6e.

=f(e)=1-=,得a=(舍去). …………………………………6分

③若即-e<a<-1,則在(1,)上為減函數(shù),在(,e)上為增函時數(shù).=f(-a)==,得.

綜上知a=-.……………………………………………………………………8分

(3)由,得.

,則.

于是.由.

上單調(diào)遞減,從而.

所以上單調(diào)遞減,于是

.     ………………………………………………………8分

,

即證:.      …………………………………10分

先證:.

時,顯然成立.

2°假設(shè)時,.

時,

,即當(dāng)時,也成立.

由1°2°知成立.

從而

.   ………………………………………14分

 

 

 


同步練習(xí)冊答案