題目列表(包括答案和解析)
給定項(xiàng)數(shù)為的數(shù)列,其中.
若存在一個(gè)正整數(shù),若數(shù)列中存在連續(xù)的k項(xiàng)和該數(shù)列中另一個(gè)連續(xù)的k項(xiàng)恰好按次序?qū)?yīng)相等,則稱數(shù)列是“k階可重復(fù)數(shù)列”,
例如數(shù)列
因?yàn)?img width=67 height=21 src="http://thumb.1010pic.com/pic1/1899/sx/182/363182.gif">與按次序?qū)?yīng)相等,所以數(shù)列是“4階可重復(fù)數(shù)列”.
(Ⅰ)分別判斷下列數(shù)列
① ②
是否是“5階可重復(fù)數(shù)列”?如果是,請(qǐng)寫出重復(fù)的這5項(xiàng);
(Ⅱ)若數(shù)為的數(shù)列一定是 “3階可重復(fù)數(shù)列”,則的最小值是多少?說明理由;
(III)假設(shè)數(shù)列不是“5階可重復(fù)數(shù)列”,若在其最后一項(xiàng)后再添加一項(xiàng)0或1,均可使新數(shù)列是“5階可重復(fù)數(shù)列”,且,求數(shù)列的最后一項(xiàng)的值.
給定項(xiàng)數(shù)為的數(shù)列,其中.
若存在一個(gè)正整數(shù),若數(shù)列中存在連續(xù)的k項(xiàng)和該數(shù)列中另一個(gè)連續(xù)的k項(xiàng)恰好按次序?qū)?yīng)相等,則稱數(shù)列是“k階可重復(fù)數(shù)列”,
例如數(shù)列
因?yàn)?img width=67 height=21 src="http://thumb.1010pic.com/pic1/1899/sx/8/390808.gif" >與按次序?qū)?yīng)相等,所以數(shù)列是“4階可重復(fù)數(shù)列”.
(Ⅰ)分別判斷下列數(shù)列
① ②
是否是“5階可重復(fù)數(shù)列”?如果是,請(qǐng)寫出重復(fù)的這5項(xiàng);
(Ⅱ)若數(shù)為的數(shù)列一定是 “3階可重復(fù)數(shù)列”,則的最小值是多少?說明理由;
(III)假設(shè)數(shù)列不是“5階可重復(fù)數(shù)列”,若在其最后一項(xiàng)后再添加一項(xiàng)0或1,均可使新數(shù)列是“5階可重復(fù)數(shù)列”,且,求數(shù)列的最后一項(xiàng)的值.
已知函數(shù)為切點(diǎn)的切線傾斜角為.
(1)求m,n的值;
(2)是否存在最小的正整數(shù)k,使得不等式恒成立?若存在,求出最小的正整數(shù)k,否則請(qǐng)說明理由。
(本小題共13分)
設(shè)數(shù)列的通項(xiàng)公式為. 數(shù)列定義如下:對(duì)于正整數(shù)m,是使得不等式成立的所有n中的最小值。
(Ⅰ)若,求;
(Ⅱ)若,求數(shù)列的前2m項(xiàng)和公式;w.w.w.k.s.5.u.c.o.m
(Ⅲ)是否存在p和q,使得?如果存在,求p和q的取值范圍;如果不存在,請(qǐng)說明理由。
已知在函數(shù)的圖象上以N(1,n)為切點(diǎn)的切線的傾斜角為
(Ⅰ)求m、n的值;
(Ⅱ)是否存在最小的正整數(shù)k,使得不等式恒成立?如果存在,請(qǐng)求出最小的正整數(shù)k;如果不存在,請(qǐng)說明理由;
(Ⅲ)(文科不做)求證:
一、選擇題:
1.A 2.B 3.A 4.D 5.B
6.A 7.A 8.B 9.C 10.B
二、填空題:
11.{2,3} 12. 13.1+i 14.3 15. 16.24 17. 18.19.2 20. 21. 45 22. 23.2 24.
三、解答題:
25解:(1)原式展開得:
(2)
26解:(1)設(shè)事件為A,則在7次拋骰子中出現(xiàn)5次奇數(shù),2次偶數(shù)
而拋骰子出現(xiàn)的奇數(shù)和偶數(shù)的概率為P是相等的,且為
根據(jù)獨(dú)立重復(fù)試驗(yàn)概率公式:
(2)若
即前2次拋骰子中都是奇數(shù)或都是偶數(shù).
若前2次都是奇數(shù),則必須在后5次中拋出3次奇數(shù)2次偶數(shù),
其概率:
若前2次都是偶數(shù),則必須在后5次中拋出5次奇數(shù),其概率:
所求事件的概率
27解:(1)由題得
設(shè)
兩式相減:
(2)
,即取時(shí),.
所求的最小自然數(shù)是15
28解:(1)正方體ABCD中,∵A.N分別是AD.BC的中點(diǎn),∴MN⊥AD
又∵PA⊥平面α,MNα,∴PA⊥MN,∴MN⊥平面PAD
又MN平面PAD,平面PMN⊥平面PAD
(2)由上可知:MN⊥平面PAD
∴PM⊥MN,QM⊥MN,∠PMQ是二面角P―MN―Q的平面角
PA=2,AD=2,則AM=1,PM=
PD=2,MQ=
29解:(1)拋物線的焦點(diǎn)是(),則雙曲線的
設(shè)雙曲線方程:
解得:
(2)聯(lián)立方程:
當(dāng)
由韋達(dá)定理:
設(shè)
代入可得:,檢驗(yàn)合格
30解:(1),
(2)令,
在[-1,3]中,在此區(qū)間為增函數(shù)時(shí),
在此區(qū)間為減函數(shù).
處取得極大值
[,3]時(shí)在此區(qū)間為增函數(shù),在x=3處取得極大值.
比較(-)和的大小得:
(無理由最大,扣3分)
即存在k=2007
(3)
而
(也可由單調(diào)性:
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com