(2)解:以為原點(diǎn).分別以.為.軸的正向.并以的垂直平分線為軸.建立空間直角坐標(biāo)系. 查看更多

 

題目列表(包括答案和解析)

,為常數(shù),離心率為的雙曲線上的動點(diǎn)到兩焦點(diǎn)的距離之和的最小值為,拋物線的焦點(diǎn)與雙曲線的一頂點(diǎn)重合。(Ⅰ)求拋物線的方程;(Ⅱ)過直線為負(fù)常數(shù))上任意一點(diǎn)向拋物線引兩條切線,切點(diǎn)分別為、,坐標(biāo)原點(diǎn)恒在以為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍。

【解析】第一問中利用由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程

第二問中,,,

故直線的方程為,即

所以,同理可得:

借助于根與系數(shù)的關(guān)系得到即是方程的兩個不同的根,所以

由已知易得,即

解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程

(Ⅱ)設(shè),,

故直線的方程為,即

所以,同理可得:

是方程的兩個不同的根,所以

由已知易得,即

 

查看答案和解析>>

如圖,在三棱柱中,側(cè)面,為棱上異于的一點(diǎn),,已知,求:

(Ⅰ)異面直線的距離;

(Ⅱ)二面角的平面角的正切值.

【解析】第一問中,利用建立空間直角坐標(biāo)系

解:(I)以B為原點(diǎn),、分別為Y,Z軸建立空間直角坐標(biāo)系.由于,

在三棱柱中有

,

設(shè)

側(cè)面,故. 因此是異面直線的公垂線,則,故異面直線的距離為1.

(II)由已知有故二面角的平面角的大小為向量的夾角.

 

查看答案和解析>>

⊙O1和⊙O2的極坐標(biāo)方程分別為

⑴把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;

⑵求經(jīng)過⊙O1,⊙O2交點(diǎn)的直線的直角坐標(biāo)方程.

【解析】本試題主要是考查了極坐標(biāo)的返程和直角坐標(biāo)方程的轉(zhuǎn)化和簡單的圓冤啊位置關(guān)系的運(yùn)用

(1)中,借助于公式,,將極坐標(biāo)方程化為普通方程即可。

(2)中,根據(jù)上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。

解:以極點(diǎn)為原點(diǎn),極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.

(I),由.所以

為⊙O1的直角坐標(biāo)方程.

同理為⊙O2的直角坐標(biāo)方程.

(II)解法一:由解得,

即⊙O1,⊙O2交于點(diǎn)(0,0)和(2,-2).過交點(diǎn)的直線的直角坐標(biāo)方程為y=-x.

解法二: 由,兩式相減得-4x-4y=0,即過交點(diǎn)的直線的直角坐標(biāo)方程為y=-x

 

查看答案和解析>>

如圖,在長方體AC1中,AB=BC=2,AA1=
2
,點(diǎn)E、F分別是面A1C1、面BC1的中心.以D為坐標(biāo)原點(diǎn),DA、DC、DD1所為直線為x,y,z軸建立空間直角坐標(biāo)系,試用向量方法解決下列問題:
(1)求異面直線AF和BE所成的角;
(2)求直線AF和平面BEC所成角的正弦值.

查看答案和解析>>

如圖,在長方體AC1中,,點(diǎn)E、F分別是面A1C1、面BC1的中心.以D為坐標(biāo)原點(diǎn),DA、DC、DD1所為直線為x,y,z軸建立空間直角坐標(biāo)系,試用向量方法解決下列問題:
(1)求異面直線AF和BE所成的角;
(2)求直線AF和平面BEC所成角的正弦值.

查看答案和解析>>


同步練習(xí)冊答案