題目列表(包括答案和解析)
,,為常數(shù),離心率為的雙曲線:上的動點(diǎn)到兩焦點(diǎn)的距離之和的最小值為,拋物線:的焦點(diǎn)與雙曲線的一頂點(diǎn)重合。(Ⅰ)求拋物線的方程;(Ⅱ)過直線:(為負(fù)常數(shù))上任意一點(diǎn)向拋物線引兩條切線,切點(diǎn)分別為、,坐標(biāo)原點(diǎn)恒在以為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍。
【解析】第一問中利用由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程
第二問中,為,,,
故直線的方程為,即,
所以,同理可得:
借助于根與系數(shù)的關(guān)系得到即,是方程的兩個不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程
(Ⅱ)設(shè)為,,,
故直線的方程為,即,
所以,同理可得:,
即,是方程的兩個不同的根,所以
由已知易得,即
如圖,在三棱柱中,側(cè)面,為棱上異于的一點(diǎn),,已知,求:
(Ⅰ)異面直線與的距離;
(Ⅱ)二面角的平面角的正切值.
【解析】第一問中,利用建立空間直角坐標(biāo)系
解:(I)以B為原點(diǎn),、分別為Y,Z軸建立空間直角坐標(biāo)系.由于,
在三棱柱中有
,
設(shè)
又側(cè)面,故. 因此是異面直線的公垂線,則,故異面直線的距離為1.
(II)由已知有故二面角的平面角的大小為向量與的夾角.
⊙O1和⊙O2的極坐標(biāo)方程分別為,.
⑴把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
⑵求經(jīng)過⊙O1,⊙O2交點(diǎn)的直線的直角坐標(biāo)方程.
【解析】本試題主要是考查了極坐標(biāo)的返程和直角坐標(biāo)方程的轉(zhuǎn)化和簡單的圓冤啊位置關(guān)系的運(yùn)用
(1)中,借助于公式,,將極坐標(biāo)方程化為普通方程即可。
(2)中,根據(jù)上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。
解:以極點(diǎn)為原點(diǎn),極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.
(I),,由得.所以.
即為⊙O1的直角坐標(biāo)方程.
同理為⊙O2的直角坐標(biāo)方程.
(II)解法一:由解得,
即⊙O1,⊙O2交于點(diǎn)(0,0)和(2,-2).過交點(diǎn)的直線的直角坐標(biāo)方程為y=-x.
解法二: 由,兩式相減得-4x-4y=0,即過交點(diǎn)的直線的直角坐標(biāo)方程為y=-x
2 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com