,,為常數(shù),離心率為的雙曲線(xiàn):上的動(dòng)點(diǎn)到兩焦點(diǎn)的距離之和的最小值為,拋物線(xiàn):的焦點(diǎn)與雙曲線(xiàn)的一頂點(diǎn)重合。(Ⅰ)求拋物線(xiàn)的方程;(Ⅱ)過(guò)直線(xiàn):(為負(fù)常數(shù))上任意一點(diǎn)向拋物線(xiàn)引兩條切線(xiàn),切點(diǎn)分別為、,坐標(biāo)原點(diǎn)恒在以為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍。
【解析】第一問(wèn)中利用由已知易得雙曲線(xiàn)焦距為,離心率為,則長(zhǎng)軸長(zhǎng)為2,故雙曲線(xiàn)的上頂點(diǎn)為,所以?huà)佄锞(xiàn)的方程
第二問(wèn)中,為,,,
故直線(xiàn)的方程為,即,
所以,同理可得:
借助于根與系數(shù)的關(guān)系得到即,是方程的兩個(gè)不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得雙曲線(xiàn)焦距為,離心率為,則長(zhǎng)軸長(zhǎng)為2,故雙曲線(xiàn)的上頂點(diǎn)為,所以?huà)佄锞(xiàn)的方程
(Ⅱ)設(shè)為,,,
故直線(xiàn)的方程為,即,
所以,同理可得:,
即,是方程的兩個(gè)不同的根,所以
由已知易得,即
(Ⅰ) (Ⅱ)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
OH |
3 |
HB |
A1F |
FC |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
3 |
8 |
3 |
1 |
4 |
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
5 |
2
| ||
5 |
1 |
|AB| |
λ |
|CD| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆湖北武漢部分重點(diǎn)中學(xué)高二下學(xué)期期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題
橢圓:的右焦點(diǎn)為且為常數(shù),離心率為,過(guò)焦點(diǎn)、傾斜角為的直線(xiàn)交橢圓與M,N兩點(diǎn),
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)=時(shí),=,求實(shí)數(shù)的值;
(3)試問(wèn)的值是否與直線(xiàn)的傾斜角的大小無(wú)關(guān),并證明你的結(jié)論
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com