科目: 來源: 題型:
【題目】已知函數(shù)的圖象在處的切線為.(為自然對數(shù)的底數(shù)).
(1)求,的值;
(2)當時,求證:;
(3)若對任意的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線 (為參數(shù)), (為參數(shù))
(Ⅰ)將的方程化為普通方程,并說明它們分別表示什么曲線;
(Ⅱ)若上的點對應的參數(shù)為,為上的動點,求中點到直線 (為參數(shù))距離的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】近年來,我國許多省市霧霾天氣頻發(fā),為增強市民的環(huán)境保護意識,某市面向全市征召名義務宣傳志愿者,成立環(huán)境保護宣傳組織,現(xiàn)把該組織的成員按年齡分成組第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示,已知第組有人.
(1)求該組織的人數(shù);
(2)若在第組中用分層抽樣的方法抽取名志愿者參加某社區(qū)的宣傳活動,應從第組各抽取多少名志愿者?
(3)在(2)的條件下,該組織決定在這名志愿者中隨機抽取名志愿者介紹宣傳經(jīng)驗,求第組至少有名志愿者被抽中的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線的焦點為,點是拋物線上任意一點,以為直徑作圓.
(1)判斷圓與坐標軸的位置關系,并證明你的結論;
(2)設直線與拋物線交于,,且,若的面積為,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在直角梯形中,,,,點是邊的中點,將沿折起,使平面平面,連接,,,得到如圖2所示的幾何體.
(1)求證:平面;
(2)若,且與平面所成角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著網(wǎng)上購物的普及,傳統(tǒng)的實體店遭受到了強烈的沖擊,某商場實體店近九年來的純利潤如下表所示:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
時間代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
實體店純利潤(千萬) | 2 | 2.3 | 2.5 | 2.9 | 3 | 2.5 | 2.1 | 1.7 | 1.2 |
根據(jù)這9年的數(shù)據(jù),對和作線性相關性檢驗,求得樣本相關系數(shù)的絕對值為0.254;根據(jù)后5年的數(shù)據(jù),對和作線性相關性檢驗,求得樣本相關系數(shù)的絕對值為0.985;
(1)如果要用線性回歸方程預測該商場2019年實體店純利潤,現(xiàn)有兩個方案:
方案一:選取這9年的數(shù)據(jù),進行預測;
方案二:選取后5年的數(shù)據(jù)進行預測.
從生活實際背景以及相關性檢驗的角度分析,你覺得哪個方案更合適.
附:相關性檢驗的臨界值表:
小概率 | ||
0.05 | 0.01 | |
3 | 0.878 | 0.959 |
7 | 0.666 | 0.798 |
(2)某機構調研了大量已經(jīng)開店的店主,據(jù)統(tǒng)計,只開網(wǎng)店的占調查總人數(shù)的,既開網(wǎng)店又開實體店的占調查總人數(shù)的,現(xiàn)以此調查統(tǒng)計結果作為概率,若從上述統(tǒng)計的店主中隨機抽查了5位,求只開實體店的人數(shù)的分布列及期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD,底面ABCD為梯形,,,且.
(1)在PD上是否存在一點F,使得平面PAB,若存在,找出F的位置,若不存在,請說明理由;
(2)求二面角的大小.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為’(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求和的直角坐標方程;
(2)已知直線與軸交于點,且與曲線交于,兩點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com