科目: 來源: 題型:
【題目】已知數(shù)列滿足:,,且.
(1)求數(shù)列前20項的和;
(2)求通項公式;
(3)設的前項和為,問:是否存在正整數(shù)、,使得?若存在,請求出所有符合條件的正整數(shù)對,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)在區(qū)間上有最大值4,最小值1,設函數(shù).
(1)求、的值及函數(shù)的解析式;
(2)若不等式在時恒成立,求實數(shù)的取值范圍;
(3)如果關(guān)于的方程有三個相異的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列滿足;數(shù)列滿足;數(shù)列為公比大于1的等比數(shù)列,且,為方程的兩個不相等的實根.
(1)求數(shù)列和數(shù)列的通項公式;
(2)將數(shù)列中的第項,第項,第項,……,第項,……刪去后剩余的項按從小到大的順序排成新數(shù)列,求數(shù)列的前2013項和.
查看答案和解析>>
科目: 來源: 題型:
【題目】某專賣店銷售一新款服裝,日銷售量(單位為件)f(n) 與時間n(1≤n≤30、nN*)的函數(shù)關(guān)系如下圖所示,其中函數(shù)f(n) 圖象中的點位于斜率為 5 和-3 的兩條直線上,兩直線交點的橫坐標為m,且第m天日銷售量最大.
(Ⅰ)求f(n) 的表達式,及前m天的銷售總數(shù);
(Ⅱ)按以往經(jīng)驗,當該專賣店銷售某款服裝的總數(shù)超過 400 件時,市面上會流行該款服裝,而日銷售量連續(xù)下降并低于 30 件時,該款服裝將不再流行.試預測本款服裝在市面上流行的天數(shù)是否會超過 10 天?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于定義在上的函數(shù),有下述命題:①若是奇函數(shù),則的圖象關(guān)于點對稱;②函數(shù)的圖象關(guān)于直線對稱,則為偶函數(shù);③若對,有,則2是的一個周期;④函數(shù)與的圖象關(guān)于直線對稱.其中正確的命題是______.(寫出所有正確命題的序號)
查看答案和解析>>
科目: 來源: 題型:
【題目】在下列向量組中,可以把向量=(3,2)表示出來的是( )
A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)
C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)
查看答案和解析>>
科目: 來源: 題型:
【題目】設為正整數(shù),若兩個項數(shù)都不小于的數(shù)列,滿足:存在正數(shù),當且時,都有,則稱數(shù)列,是“接近的”.已知無窮等比數(shù)列滿足,無窮數(shù)列的前項和為,,且,.
(1)求數(shù)列通項公式;
(2)求證:對任意正整數(shù),數(shù)列,是“接近的”;
(3)給定正整數(shù),數(shù)列,(其中)是“接近的”,求的最小值,并求出此時的(均用表示).(參考數(shù)據(jù):)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在處的切線的斜率為2,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上有零點,求實數(shù)的取值范圍.(是自然對數(shù)的底數(shù),)
查看答案和解析>>
科目: 來源: 題型:
【題目】請你設計一個包裝盒,是邊長為的正方形硬紙片(如圖1所示),切去陰影部分所示的四個全等的等腰三角形,再沿虛線折起,使得,,,四個點重合于圖2中的點,正好形成一個正四棱錐形狀的包裝盒(如圖2所示),設正四棱錐的底面邊長為.
(1)若要求包裝盒側(cè)面積不小于,求的取值范圍;
(2)若要求包裝盒容積最大,試問應取何值?并求出此時包裝盒的容積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com