科目: 來源: 題型:
【題目】自由購是一種通過自助結(jié)算購物的形式.某大型超市為調(diào)查顧客自由購的使用情況,隨機(jī)抽取了100人,調(diào)查結(jié)果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人數(shù) | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人數(shù) | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(1)現(xiàn)隨機(jī)抽取1名顧客,試估計(jì)該顧客年齡在[30,50)且未使用自由購的概率;
(2)從被抽取的年齡在[50,70]使用的自由購顧客中,隨機(jī)抽取2人進(jìn)一步了解情況,求這2人年齡都在[50,60)的概率;
(3)為鼓勵(lì)顧客使用自由購,該超市擬對(duì)使用自由購顧客贈(zèng)送1個(gè)環(huán)保購物袋.若某日該超市預(yù)計(jì)有5000人購物,試估計(jì)該超市當(dāng)天至少應(yīng)準(zhǔn)備多少個(gè)環(huán)保購物袋?
查看答案和解析>>
科目: 來源: 題型:
【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售.如果當(dāng)天賣不完,剩下的玫瑰花做垃圾處理.
(Ⅰ)若花店一天購進(jìn)17枝玫瑰花,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
(i)假設(shè)花店在這100天內(nèi)每天購進(jìn)17枝玫瑰花,求這100天的日利潤(rùn)(單位:元)的平均數(shù);
(ii)若花店一天購進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)不少于75元的概率.
(命題意圖)本題主要考查給出樣本頻數(shù)分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡(jiǎn)單題.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在中,,,,分別為,的中點(diǎn)是由繞直線旋轉(zhuǎn)得到,連結(jié),,.
(1)證明:平面;
(2)若,棱上是否存在一點(diǎn),使得?若存在,確定點(diǎn) 的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的離心率為,直線l:x+2y=4與橢圓有且只有一個(gè)交點(diǎn)T.
(I)求橢圓C的方程和點(diǎn)T的坐標(biāo);
(Ⅱ)O為坐標(biāo)原點(diǎn),與OT平行的直線l′與橢圓C交于不同的兩點(diǎn)A,B,直線l′與直線l交于點(diǎn)P,試判斷是否為定值,若是請(qǐng)求出定值,若不是請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】是自然對(duì)數(shù)的底數(shù),,已知函數(shù),.
(1)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)對(duì)于,證明:當(dāng)時(shí),.
查看答案和解析>>
科目: 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(Ⅰ)求曲線的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)若直線與曲線相交于, 兩點(diǎn),求的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】張師傅欲將一球形的石材工件削砍加工成一圓柱形的新工件,已知原球形工件的半徑為,則張師傅的材料利用率的最大值等于(注:材料利用率=)( )
A. B. C. D.
【答案】C
【解析】設(shè)球半徑為R,圓柱的體積為時(shí)圓柱的體積最大為 ,因此材料利用率= ,選C.
點(diǎn)睛:空間幾何體與球接、切問題的求解方法
求解球與棱柱、棱錐的接、切問題時(shí),一般過球心及接、切點(diǎn)作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識(shí)尋找?guī)缀沃性亻g的關(guān)系求解.
【題型】單選題
【結(jié)束】
12
【題目】已知拋物線: 在點(diǎn)處的切線與曲線: 相切,若動(dòng)直線分別與曲線、相交于、兩點(diǎn),則的最小值為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】PM2.5是空氣質(zhì)量的一個(gè)重要指標(biāo),我國PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均值在35μg/m3以下空氣質(zhì)量為一級(jí),在35μg/m3~75μg/m3之間空氣質(zhì)量為二級(jí),在75μg/m3以上空氣質(zhì)量為超標(biāo).如圖是某市2019年12月1日到10日PM2.5日均值(單位:μg/m3)的統(tǒng)計(jì)數(shù)據(jù),則下列敘述不正確的是( )
A.這10天中,12月5日的空氣質(zhì)量超標(biāo)
B.這10天中有5天空氣質(zhì)量為二級(jí)
C.從5日到10日,PM2.5日均值逐漸降低
D.這10天的PM2.5日均值的中位數(shù)是47
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的方程為,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.
(1)求直線l的直角坐標(biāo)方程;
(2)已知P是曲線C上的一動(dòng)點(diǎn),過點(diǎn)P作直線交直線于點(diǎn)A,且直線與直線l的夾角為45°,若的最大值為6,求a的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線C上每一點(diǎn)到直線l:的距離比它到點(diǎn)的距離大1.
(1)求曲線C的方程;
(2)曲線C任意一點(diǎn)處的切線m(不含x軸)與直線相交于點(diǎn)M,與直線l相交于點(diǎn)N,證明:為定值,并求此定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com