科目: 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)設(shè)曲線與軸正半軸交于點(diǎn),求曲線在該點(diǎn)處的切線方程;
(Ⅱ)設(shè)方程有兩個(gè)實(shí)數(shù)根,,求證:
查看答案和解析>>
科目: 來源: 題型:
【題目】某班級有60名學(xué)生,學(xué)號分別為1~60,其中男生35人,女生25人.為了了解學(xué)生的體質(zhì)情況,甲、乙兩人對全班最近一次體育測試的成績分別進(jìn)行了隨機(jī)抽樣.其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣,他們得到各12人的樣本數(shù)據(jù)如下所示,并規(guī)定體育成績大于或等于80人為優(yōu)秀.
甲抽取的樣本數(shù)據(jù):
學(xué)號 | 4 | 9 | 14 | 19 | 24 | 29 | 34 | 39 | 44 | 49 | 54 | 59 |
性別 | 男 | 女 | 男 | 男 | 女 | 男 | 女 | 男 | 女 | 女 | 男 | 男 |
體育成績 | 90 | 80 | 75 | 80 | 83 | 85 | 75 | 80 | 70 | 80 | 83 | 70 |
女抽取的樣本數(shù)據(jù):
學(xué)號 | 1 | 8 | 10 | 20 | 23 | 28 | 33 | 35 | 43 | 48 | 52 | 57 |
性別 | 男 | 男 | 男 | 男 | 男 | 男 | 男 | 女 | 女 | 女 | 女 | 女 |
體育成績 | 95 | 85 | 85 | 80 | 70 | 80 | 80 | 65 | 70 | 60 | 70 | 80 |
(Ⅰ)在乙抽取的樣本中任取4人,記這4人中體育成績優(yōu)秀的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望;
(Ⅱ)請你根據(jù)乙抽取的樣本數(shù)據(jù),判斷是否有95%的把握認(rèn)為體育成績是否為優(yōu)秀和性別有關(guān);
(Ⅲ)判斷甲、乙各用的何種抽樣方法,并根據(jù)(Ⅱ)的結(jié)論判斷哪種抽樣方法更優(yōu),說明理由.
附:
0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,且直線l與曲線C交于M、N兩點(diǎn).
(1)求直線l的普通方程以及曲線C的直角坐標(biāo)方程;
(2)若曲線C外一點(diǎn)恰好落在直線l上,且,求m,n的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】超級細(xì)菌是一種耐藥性細(xì)菌,產(chǎn)生超級細(xì)菌的主要原因是用于抵抗細(xì)菌侵蝕的藥物越來越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對相應(yīng)的抗生素產(chǎn)生了耐藥性,更可怕的是,抗生素藥物對它起不到什么作用,病人會因?yàn)楦腥径鹂膳碌难装Y,高燒,痙攣,昏迷甚至死亡.某藥物研究所為篩查某種超級細(xì)菌,需要檢驗(yàn)血液是否為陽性,現(xiàn)有n()份血液樣本,每個(gè)樣本取到的可能性相等,有以下兩種檢驗(yàn)方式:(1)逐份檢驗(yàn),則需要檢驗(yàn)n次;(2)混合檢驗(yàn),將其中k(且)份血液樣本分別取樣混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果為陰性,則這份的血液全為陰性,因而這k份血液樣本只要檢驗(yàn)一次就夠了;如果檢驗(yàn)結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份血液再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為次.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽性還是陰性都是獨(dú)立的,且每份樣本是陽性結(jié)果的概率為p().現(xiàn)取其中k(且)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.
(1)運(yùn)用概率統(tǒng)計(jì)的知識,若,試求P關(guān)于k的函數(shù)關(guān)系式;
(2)若P與抗生素計(jì)量相關(guān),其中,,…,()是不同的正實(shí)數(shù),滿足,對任意的(),都有.
(i)證明:為等比數(shù)列;
(ii)當(dāng)時(shí),采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求k的最大值.
參考數(shù)據(jù):,,,,,
,,,
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C:()的左、右焦點(diǎn)分別為、,離心率為,點(diǎn)P是橢圓C上的一個(gè)動點(diǎn),且面積的最大值為.
(1)求橢圓C的方程;
(2)橢圓C與x軸交于A、B兩點(diǎn),直線和與直線l:分別交于點(diǎn)M,N,試探究以為直徑的圓是否恒過定點(diǎn),若是,求出所有定點(diǎn)的坐標(biāo):若否,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),,且與的圖象有一條斜率為1的公切線(e為自然對數(shù)的底數(shù)).
(1)求;
(2)設(shè)函數(shù),證明:當(dāng)時(shí),有且僅有2個(gè)零點(diǎn).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐的側(cè)棱與四棱錐的側(cè)棱都與底面垂直,,,,,,.
(1)證明:平面;
(2)在棱上是否存在點(diǎn)M,使平面與平面所成角的正弦值為?如果存在,指出M點(diǎn)的位置;如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知四棱錐,底面為矩形,側(cè)面平面,.,若點(diǎn)M為的中點(diǎn),則下列說法正確的個(gè)數(shù)為( )
(1)平面 (2)四棱錐的體積為12
(3)平面 (4)四棱錐外接球的表面積為
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目: 來源: 題型:
【題目】元朝著名的數(shù)學(xué)家朱世杰在《四元玉鑒》中有一首詩:“我有一壺酒,攜著游春走.遇店添一倍,逢友飲一斗.”基于此情景,設(shè)計(jì)了如圖所示的程序框圖,若輸入的,輸出的,則判斷框中可以填( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】2020元旦聯(lián)歡晚會上,,兩班各設(shè)計(jì)了一個(gè)摸球表演節(jié)目的游戲:班在一個(gè)紙盒中裝有1個(gè)紅球,1個(gè)黃球,1個(gè)白球,這些球除顏色外完全相同,記事件:同學(xué)們有放回地每次摸出1個(gè)球,重復(fù)次,次摸球中既有紅球,也有黃球,還有白球;班在一個(gè)紙盒中裝有1個(gè)藍(lán)球,1個(gè)黑球,這些球除顏色外完全相同,記事件:同學(xué)們有放回地每次摸出1個(gè)球,重復(fù)次,次摸球中既有藍(lán)球,也有黑球,事件發(fā)生的概率為,事件發(fā)生的概率為.
(1)求概率,及,;
(2)已知,其中,為常數(shù),求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com