相關(guān)習(xí)題
 0  265050  265058  265064  265068  265074  265076  265080  265086  265088  265094  265100  265104  265106  265110  265116  265118  265124  265128  265130  265134  265136  265140  265142  265144  265145  265146  265148  265149  265150  265152  265154  265158  265160  265164  265166  265170  265176  265178  265184  265188  265190  265194  265200  265206  265208  265214  265218  265220  265226  265230  265236  265244  266669 

科目: 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為θ為參數(shù)),在以O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線lm為常數(shù)).

1)求曲線C的普通方程與直線l的直角坐標(biāo)方程;

2)若直線l與曲線C相交于A、B兩點(diǎn),當(dāng)|AB|=4時(shí),求實(shí)數(shù)m的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線與橢圓有一個(gè)相同的焦點(diǎn),過點(diǎn)且與軸不垂直的直線與拋物線交于,兩點(diǎn),關(guān)于軸的對(duì)稱點(diǎn)為.

(1)求拋物線的方程;

(2)試問直線是否過定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),若關(guān)于的方程恰有三個(gè)不相等的實(shí)數(shù)解,則的取值范圍是  

A. B.

C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】珠算之父程大位是我國明代著名的數(shù)學(xué)家,他的應(yīng)用巨著《算法統(tǒng)綜》中有一首竹筒容米問題:家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)四升五,上梢四節(jié)三升八,唯有中間兩節(jié)竹,要將米數(shù)次第盛,若有先生能算法,也教算得到天明.”((注)四升五:4.5升,次第盛:盛米容積依次相差同一數(shù)量.)用你所學(xué)的數(shù)學(xué)知識(shí)求得中間兩節(jié)竹的容積為

A. 2.2B. 2.3

C. 2.4D. 2.5

查看答案和解析>>

科目: 來源: 題型:

【題目】為比較甲,乙兩地某月時(shí)的氣溫,隨機(jī)選取該月中的天,將這天中時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:①甲地該月時(shí)的平均氣溫低于乙地該月時(shí)的平均氣溫;②甲地該月時(shí)的平均氣溫高于乙地該月時(shí)的平均氣溫;③甲地該月時(shí)的氣溫的中位數(shù)小于乙地該月時(shí)的氣溫的中位數(shù);④甲地該月時(shí)的氣溫的中位數(shù)大于乙地該月時(shí)的氣溫的中位數(shù).其中根據(jù)莖葉圖能得到的正確結(jié)論的編號(hào)為( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓上一點(diǎn)處的切線分別交軸于點(diǎn),以為頂點(diǎn)且以為中心的橢圓記作,直線兩點(diǎn).

1)若橢圓的離心率為,求點(diǎn)坐標(biāo);

2)證明:四邊形的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知平面平面為等邊三角形,的中點(diǎn).

1)求證:平面平面;

2)求直線和平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)是單調(diào)函數(shù),則實(shí)數(shù)的取值范圍是_________;若存在實(shí)數(shù),使函數(shù)有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是________.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為α為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcosθ1.

1)求C1的極坐標(biāo)方程,并求C1C2交點(diǎn)的極坐標(biāo);

2)若曲線C3θβρ0)與C1,C2的交點(diǎn)分別為M,N,求|OM||ON|的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案