相關(guān)習(xí)題
 0  264931  264939  264945  264949  264955  264957  264961  264967  264969  264975  264981  264985  264987  264991  264997  264999  265005  265009  265011  265015  265017  265021  265023  265025  265026  265027  265029  265030  265031  265033  265035  265039  265041  265045  265047  265051  265057  265059  265065  265069  265071  265075  265081  265087  265089  265095  265099  265101  265107  265111  265117  265125  266669 

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為:為參數(shù)).在以坐標(biāo)原點為極點,x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為.

(Ⅰ)求曲線C的普通方程和直線l的直角坐標(biāo)方程;

(Ⅱ)設(shè)點P的直角坐標(biāo)為,若直線l與曲線C分別相交于A,B兩點,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,平面,四邊形為平行四邊形,且.

1)證明:平面

2)當(dāng)直線與平面所成角的正切值為時,求銳二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線與圓相交于兩點,且點的橫坐標(biāo)為.是拋物線的焦點,過焦點的直線與拋物線相交于不同的兩點,.

1)求拋物線的方程.

2)過點,作拋物線的切線,,的交點,求證:點在定直線上.

查看答案和解析>>

科目: 來源: 題型:

【題目】在某企業(yè)中隨機抽取了5名員工測試他們的藝術(shù)愛好指數(shù)和創(chuàng)新靈感指數(shù),統(tǒng)計結(jié)果如下表(注:指數(shù)值越高素質(zhì)越優(yōu)秀):

1)求創(chuàng)新靈感指數(shù)關(guān)于藝術(shù)愛好指數(shù)的線性回歸方程;

2)企業(yè)為提高員工的藝術(shù)愛好指數(shù),要求員工選擇音樂和繪畫中的一種進行培訓(xùn),培訓(xùn)音樂次數(shù)對藝術(shù)愛好指數(shù)的提高量為,培訓(xùn)繪畫次數(shù)對藝術(shù)愛好指數(shù)的提高量為,其中為參加培訓(xùn)的某員工已達到的藝術(shù)愛好指數(shù).藝術(shù)愛好指數(shù)已達到3的員工甲選擇參加音樂培訓(xùn),藝術(shù)愛好指數(shù)已達到4的員工乙選擇參加繪畫培訓(xùn),在他們都培訓(xùn)了20次后,估計誰的創(chuàng)新靈感指數(shù)更高?

參考公式:回歸方程中,,.

參考數(shù)據(jù):,

查看答案和解析>>

科目: 來源: 題型:

【題目】已知在平面直角坐標(biāo)系內(nèi),曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)把曲線和直線化為直角坐標(biāo)方程;

2)過原點引一條射線分別交曲線和直線,兩點,射線上另有一點滿足,求點的軌跡方程(寫成直角坐標(biāo)形式的普通方程).

查看答案和解析>>

科目: 來源: 題型:

【題目】某中醫(yī)藥研究所研制出一種新型抗癌藥物,服用后需要檢驗血液是否為陽性,現(xiàn)有份血液樣本每個樣本取到的可能性均等,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗次;(2)混合檢驗,將其中份血液樣本分別取樣混合在一起檢驗,若結(jié)果為陰性,則這份的血液全為陰性,因而這份血液樣本只需檢驗一次就夠了;若檢驗結(jié)果為陽性,為了明確這份血液究竟哪份為陽性,就需要對這份再逐份檢驗,此時這份血液的檢驗次數(shù)總共為次假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果總陽性還是陰性都是相互獨立的,且每份樣本是陽性的概率為

1)假設(shè)有6份血液樣本,其中只有兩份樣本為陽性,若采取遂份檢驗的方式,求恰好經(jīng)過兩次檢驗就能把陽性樣本全部檢驗出來的概率.

2)現(xiàn)取其中的份血液樣本,記采用逐份檢驗的方式,樣本需要檢驗的次數(shù)為;采用混合檢驗的方式,樣本簡要檢驗的總次數(shù)為;

(ⅰ)若,試運用概率與統(tǒng)計的知識,求關(guān)于的函數(shù)關(guān)系,

(ⅱ)若,采用混合檢驗的方式需要檢驗的總次數(shù)的期望比逐份檢驗的總次數(shù)的期望少,求的最大值(,,,,

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱柱中,為正三角形,,, ,點在線段上,且.

1)證明:;

2)求和平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】2019年,河南省鄭州市的房價依舊是鄭州市民關(guān)心的話題.總體來說,二手房房價有所下降,相比二手房而言,新房市場依然強勁,價格持續(xù)升高.已知銷售人員主要靠售房提成領(lǐng)取工資.現(xiàn)統(tǒng)計鄭州市某新房銷售人員一年的工資情況的結(jié)果如圖所示,若近幾年來該銷售人員每年的工資總體情況基本穩(wěn)定,則下列說法正確的是(

A.月工資增長率最高的為8月份

B.該銷售人員一年有6個月的工資超過4000

C.由此圖可以估計,該銷售人員202067,8月的平均工資將會超過5000

D.該銷售人員這一年中的最低月工資為1900

查看答案和解析>>

科目: 來源: 題型:

【題目】已知在平面直角坐標(biāo)系內(nèi),曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)把曲線和直線化為直角坐標(biāo)方程;

2)過原點引一條射線分別交曲線和直線,兩點,射線上另有一點滿足,求點的軌跡方程(寫成直角坐標(biāo)形式的普通方程).

查看答案和解析>>

科目: 來源: 題型:

【題目】某中醫(yī)藥研究所研制出一種新型抗癌藥物,服用后需要檢驗血液是否為陽性,現(xiàn)有份血液樣本每個樣本取到的可能性均等,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗次;(2)混合檢驗,將其中份血液樣本分別取樣混合在一起檢驗,若結(jié)果為陰性,則這份的血液全為陰性,因而這份血液樣本只需檢驗一次就夠了;若檢驗結(jié)果為陽性,為了明確這份血液究竟哪份為陽性,就需要對這份再逐份檢驗,此時這份血液的檢驗次數(shù)總共為次假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果總陽性還是陰性都是相互獨立的,且每份樣本是陽性的概率為

1)假設(shè)有6份血液樣本,其中只有兩份樣本為陽性,若采取遂份檢驗的方式,求恰好經(jīng)過兩次檢驗就能把陽性樣本全部檢驗出來的概率.

2)現(xiàn)取其中的份血液樣本,記采用逐份檢驗的方式,樣本需要檢驗的次數(shù)為;采用混合檢驗的方式,樣本簡要檢驗的總次數(shù)為;

(。┤,試運用概率與統(tǒng)計的知識,求關(guān)于的函數(shù)關(guān)系

(ⅱ)若,采用混合檢驗的方式需要檢驗的總次數(shù)的期望比逐份檢驗的總次數(shù)的期望少,求的最大值(,,,

查看答案和解析>>

同步練習(xí)冊答案