【題目】在某企業(yè)中隨機(jī)抽取了5名員工測(cè)試他們的藝術(shù)愛好指數(shù)和創(chuàng)新靈感指數(shù),統(tǒng)計(jì)結(jié)果如下表(注:指數(shù)值越高素質(zhì)越優(yōu)秀):

1)求創(chuàng)新靈感指數(shù)關(guān)于藝術(shù)愛好指數(shù)的線性回歸方程;

2)企業(yè)為提高員工的藝術(shù)愛好指數(shù),要求員工選擇音樂和繪畫中的一種進(jìn)行培訓(xùn),培訓(xùn)音樂次數(shù)對(duì)藝術(shù)愛好指數(shù)的提高量為,培訓(xùn)繪畫次數(shù)對(duì)藝術(shù)愛好指數(shù)的提高量為,其中為參加培訓(xùn)的某員工已達(dá)到的藝術(shù)愛好指數(shù).藝術(shù)愛好指數(shù)已達(dá)到3的員工甲選擇參加音樂培訓(xùn),藝術(shù)愛好指數(shù)已達(dá)到4的員工乙選擇參加繪畫培訓(xùn),在他們都培訓(xùn)了20次后,估計(jì)誰的創(chuàng)新靈感指數(shù)更高?

參考公式:回歸方程中,,.

參考數(shù)據(jù):

【答案】12)培訓(xùn)后乙的創(chuàng)新靈感指數(shù)更高

【解析】

1)先求得,再根據(jù)提供的數(shù)據(jù),求得,寫出回歸直線方程.

2)根據(jù)培訓(xùn)音樂次數(shù)對(duì)藝術(shù)愛好指數(shù)的提高量為,培訓(xùn)繪畫次數(shù)對(duì)藝術(shù)愛好指數(shù)的提高量為,分別得到員工甲經(jīng)過20次的培訓(xùn)后,他們的藝術(shù)愛好指數(shù),再估計(jì)他們的創(chuàng)新靈感指數(shù),比較即可.

1)設(shè),有

,

.

2)員工甲經(jīng)過20次的培訓(xùn)后,

估計(jì)他的藝術(shù)愛好指數(shù)將達(dá)到,

因此估計(jì)他的創(chuàng)新靈感指數(shù)為.

員工乙經(jīng)過20次的培訓(xùn)后,

估計(jì)他的藝術(shù)愛好指數(shù)將達(dá)到

因此估計(jì)他的創(chuàng)新靈感指數(shù)為.

由于,故培訓(xùn)后乙的創(chuàng)新靈感指數(shù)更高.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,以等腰直角三角形ABC的斜邊BC上的高AD為折痕,把ABDACD折成互相垂直的兩個(gè)平面后,某學(xué)生得出下列四個(gè)結(jié)論:

BDAC

②△BAC是等邊三角形;

③三棱錐DABC是正三棱錐;

④平面ADC⊥平面ABC.

其中正確的是(

A.①②④B.①②③

C.②③④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),其中.

(1)當(dāng)q=1時(shí),化簡(jiǎn):;

(2)當(dāng)q=n時(shí),記,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如下表, 的導(dǎo)函數(shù)的圖象如圖所示,下列關(guān)于的命題:

-1

0

4

5

1

2

2

1

①函數(shù)的極大值點(diǎn)為0,4;

②函數(shù)在[0,2]上是減函數(shù);

③如果當(dāng)時(shí), 的最大值是2,那么t的最大值為4;

④當(dāng)1<a<2時(shí),函數(shù)有4個(gè)零點(diǎn).

其中正確命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,四邊形為矩形,直線與平面所成的角為,,,.

(1)求證:直線平面;

(2)點(diǎn)在線段上,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,過點(diǎn)的直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.

(1)若點(diǎn)的直角坐標(biāo)為,求直線及曲線的直角坐標(biāo)方程

(2)若點(diǎn)上,直線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市十所重點(diǎn)中學(xué)進(jìn)行高三聯(lián)考,共有5000名考生,為了了解數(shù)學(xué)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機(jī)抽出若干名學(xué)生在這次測(cè)試中的數(shù)學(xué)成績(jī),制成如下頻率分布表:

分組

頻數(shù)

頻率

36

12

合計(jì)

1)根據(jù)上面頻率分布表,推出①,②,③,④處的數(shù)值分別為 , , ;

2)在所給的坐標(biāo)系中畫出區(qū)間上的頻率分布直方圖;

3)根據(jù)題中信息估計(jì)總體:

i120分及以上的學(xué)生數(shù);

ii)平均分;

iii)成績(jī)落在中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】101日,某品牌的兩款最新手機(jī)(記為型號(hào),型號(hào))同時(shí)投放市場(chǎng),手機(jī)廠商為了解這兩款手機(jī)的銷售情況,在101日當(dāng)天,隨機(jī)調(diào)查了5個(gè)手機(jī)店中這兩款手機(jī)的銷量(單位:部),得到下表:

手機(jī)店

型號(hào)手機(jī)銷量

6

6

13

8

11

型號(hào)手機(jī)銷量

12

9

13

6

4

(Ⅰ)若在101日當(dāng)天,從,這兩個(gè)手機(jī)店售出的新款手機(jī)中各隨機(jī)抽取1部,求抽取的2部手機(jī)中至少有一部為型號(hào)手機(jī)的概率;

(Ⅱ)現(xiàn)從這5個(gè)手機(jī)店中任選3個(gè)舉行促銷活動(dòng),用表示其中型號(hào)手機(jī)銷量超過型號(hào)手機(jī)銷量的手機(jī)店的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(III)經(jīng)測(cè)算,型號(hào)手機(jī)的銷售成本(百元)與銷量(部)滿足關(guān)系.若表中型號(hào)手機(jī)銷量的方差,試給出表中5個(gè)手機(jī)店的型號(hào)手機(jī)銷售成本的方差的值.(用表示,結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.

1)焦點(diǎn)在x軸上,實(shí)軸長(zhǎng)10,虛軸長(zhǎng)8.

2)焦點(diǎn)在y軸上,焦距是10,虛軸長(zhǎng)8.

3)離心率,經(jīng)過點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案