相關(guān)習(xí)題
 0  264671  264679  264685  264689  264695  264697  264701  264707  264709  264715  264721  264725  264727  264731  264737  264739  264745  264749  264751  264755  264757  264761  264763  264765  264766  264767  264769  264770  264771  264773  264775  264779  264781  264785  264787  264791  264797  264799  264805  264809  264811  264815  264821  264827  264829  264835  264839  264841  264847  264851  264857  264865  266669 

科目: 來源: 題型:

【題目】在“挑戰(zhàn)不可能”的電視節(jié)目上,甲、乙、丙三個人組成的解密團隊參加一項解密挑戰(zhàn)活動,規(guī)則是由密碼專家給出題目,然后由個人依次出場解密,每人限定時間是分鐘內(nèi),否則派下一個人.個人中只要有一人解密正確,則認(rèn)為該團隊挑戰(zhàn)成功,否則挑戰(zhàn)失敗.根據(jù)甲以往解密測試情況,抽取了甲次的測試記錄,繪制了如下的頻率分布直方圖.

1)若甲解密成功所需時間的中位數(shù)為,求的值,并求出甲在分鐘內(nèi)解密成功的頻率;

2)在“挑戰(zhàn)不可能”節(jié)目上由于來自各方及自身的心理壓力,甲,乙,丙解密成功的概率分別為,其中表示第個出場選手解密成功的概率,并且定義為甲抽樣中解密成功的頻率代替,各人是否解密成功相互獨立.

求該團隊挑戰(zhàn)成功的概率;

該團隊以從小到大的順序按排甲、乙、丙三個人上場解密,求團隊挑戰(zhàn)成功所需派出的人員數(shù)目的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】中,,.已知分別是的中點.沿折起,使的位置且二面角的大小是60°,連接,如圖:

1)證明:平面平面

2)求平面與平面所成二面角的大小.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線和直線,的焦點,上一點,過作拋物線的一條切線與軸交于,則外接圓面積的最小值為( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,設(shè)的兩個不同極值點,證明:;

2)設(shè),的兩個不同零點,證明:.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線)上的兩個動點,焦點為F.線段的中點為,且點到拋物線的焦點F的距離之和為8

1)求拋物線的標(biāo)準(zhǔn)方程;

2)若線段的垂直平分線與x軸交于點C,求面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

1)求函數(shù)的零點,以及曲線在其零點處的切線方程;

2)若方程有兩個實數(shù)根,求證:.

查看答案和解析>>

科目: 來源: 題型:

【題目】某市政府為了引導(dǎo)居民合理用水,決定全面實施階梯水價,居民用水原則上以住宅為單位(一套住宅為一戶).

階梯級別

第一階梯

第二階梯

第三階梯

月用水范圍(噸)

為了了解全市居民月用水量的分布情況,通過抽樣,獲得了戶居民的月用水量(單位:噸),得到統(tǒng)計表如下:

居民用水戶編號

1

2

3

4

5

6

7

8

9

10

用水量(噸)

7

8

8

9

10

11

<>13

14

15

20

1)若用水量不超過噸時,按/噸計算水費;若用水量超過噸且不超過噸時,超過噸部分按/噸計算水費;若用水量超過噸時,超過噸部分按/噸計算水費.試計算:若某居民用水噸,則應(yīng)交水費多少元?

2)現(xiàn)要在這戶家庭中任意選取戶,求取到第二階梯水量的戶數(shù)的分布列與期望;

3)用抽到的戶家庭作為樣本估計全市的居民用水情況,從全市依次隨機抽取戶,若抽到戶月用水量為第一階梯的可能性最大,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某班主任對全班50名學(xué)生學(xué)習(xí)積極性和對待班級工作的態(tài)度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:

積極參加

班級工作

不太主動參加

班級工作

合計

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性一般

6

19

25

合計

24

26

50

1)如果隨機抽查這個班的一名學(xué)生,那么抽到積極參加班級工作的學(xué)生的概率是多少?抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?

2)試運用獨立性檢驗的思想方法能否有99.9%的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度有關(guān)系?并說明理由.(參考下表)

P(K2

k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓經(jīng)過點,離心率為.

1)求橢圓的方程;

2)過點作兩條互相垂直的弦分別與橢圓交于點,求點到直線距離的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】有人收集了七月份的日平均氣溫(攝氏度)與某次冷飲店日銷售額(百元)的有關(guān)數(shù)據(jù),為分析其關(guān)系,該店做了五次統(tǒng)計,所得數(shù)據(jù)如下:

日平均氣溫(攝氏度)

31

32

33

34

35

日銷售額(百元)

5

6

7

8

10

由資料可知,關(guān)于的線性回歸方程是,給出下列說法:

;

②日銷售額(百元)與日平均氣溫(攝氏度)成正相關(guān);

③當(dāng)日平均氣溫為攝氏度時,日銷售額一定為百元.

其中正確說法的序號是______.

查看答案和解析>>

同步練習(xí)冊答案