相關習題
 0  264256  264264  264270  264274  264280  264282  264286  264292  264294  264300  264306  264310  264312  264316  264322  264324  264330  264334  264336  264340  264342  264346  264348  264350  264351  264352  264354  264355  264356  264358  264360  264364  264366  264370  264372  264376  264382  264384  264390  264394  264396  264400  264406  264412  264414  264420  264424  264426  264432  264436  264442  264450  266669 

科目: 來源: 題型:

【題目】已知橢圓的左、右焦點為,點在橢圓上.

(1)設點到直線的距離為,證明:為定值;

(2)若是橢圓上的兩個動點(都不與重合),直線的斜率互為相反數(shù),求直線的斜率(結果用表示)

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,在平行四邊形中,邊的中點,將沿折起,使點到達點的位置,且

(1)求證; 平面平面;

(2)若平面和平面的交線為,求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】檳榔原產(chǎn)于馬來西亞,中國主要分布在云南、海南及臺灣等熱帶地區(qū),在亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,在南方一些少數(shù)民族還有將果實作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國際癌癥研究機構列為致癌物清單Ⅰ類致癌物.云南某民族中學為了解,兩個少數(shù)民族班學生咀嚼檳榔的情況,分別從這兩個班中隨機抽取5名同學進行調(diào)查,將他們平均每周咀嚼檳榔的顆數(shù)作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).

(1)從班的樣本數(shù)據(jù)中隨機抽取一個不超過19的數(shù)據(jù)記為,從班的樣本數(shù)據(jù)中隨機抽取一個不超過21的數(shù)據(jù)記為,求的概率;

(2)從所有咀嚼檳榔顆數(shù)在20顆以上(包含20顆)的同學中隨機抽取3人,求被抽到班同學人數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知是兩條異面直線,直線都垂直,則下列說法正確的是( )

A. 平面,則

B. 平面,則,

C. 存在平面,使得,,

D. 存在平面,使得,,

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,已知直線l的參數(shù)方程為:,為參數(shù)點的極坐標為,曲線C的極坐標方程為

試將曲線C的極坐標方程化為直角坐標方程,并求曲線C的焦點在直角坐標系下的坐標;

設直線l與曲線C相交于兩點A,B,點MAB的中點,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的離心率,且與直線相切.

1)求橢圓的標準方程;

2)過橢圓上點作橢圓的弦,若,的中點分別為,,若平行于,則,斜率之和是否為定值?

查看答案和解析>>

科目: 來源: 題型:

【題目】設數(shù)列的前項和為,且,數(shù)列為等差數(shù)列,且,.

1)求數(shù)列的通項公式;

2)設,求數(shù)列的前項和

3)若對任意正整數(shù),不等式均成立,求的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的左、右焦點為,點在橢圓上.

(1)設點到直線的距離為,證明:為定值;

(2)若是橢圓上的兩個動點(都不與重合),直線的斜率互為相反數(shù),求直線的斜率(結果用表示)

查看答案和解析>>

科目: 來源: 題型:

【題目】某學校為擔任班主任的教師辦理手機語音月卡套餐,為了解通話時長,采用隨機抽樣的方法,得到該校100位班主任每人的月平均通話時長(單位:分鐘)的數(shù)據(jù),其頻率分布直方圖如圖所示,將頻率視為概率.

(1)求圖中的值;

(2)估計該校擔任班主任的教師月平均通話時長的中位數(shù);

(3)在,這兩組中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求抽取的2人恰在同一組的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,已知圓與圓關于直線對稱.

1)求直線的方程;

2)設圓與圓交于點,點為圓上的動點,求面積的最大值.

查看答案和解析>>

同步練習冊答案