相關習題
 0  264183  264191  264197  264201  264207  264209  264213  264219  264221  264227  264233  264237  264239  264243  264249  264251  264257  264261  264263  264267  264269  264273  264275  264277  264278  264279  264281  264282  264283  264285  264287  264291  264293  264297  264299  264303  264309  264311  264317  264321  264323  264327  264333  264339  264341  264347  264351  264353  264359  264363  264369  264377  266669 

科目: 來源: 題型:

【題目】已知兩點A0,﹣1),B01),直線PA,PB相交于點P,且它們的斜率之積是,記點P軌跡為C.

1)求曲線C的軌跡方程;

2)直線l與曲線C交于M,N兩點,若|AM||AN|,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】橢圓兩焦點分別為、,且離心率;

(1)設E是直線與橢圓的一個交點,求取最小值時橢圓的方程;

(2)已知,是否存在斜率為k的直線l與(1)中的橢圓交于不同的兩點AB,使得點N在線段AB的垂直平分線上,若存在,求出直線ly軸上截距的范圍;若不存在,說明理由。

查看答案和解析>>

科目: 來源: 題型:

【題目】學校為了對教師教學水平和教師管理水平進行評價,從該校學生中選出300人進行統(tǒng)計.其中對教師教學水平給出好評的學生人數(shù)為總數(shù)的,對教師管理水平給出好評的學生人數(shù)為總數(shù)的,其中對教師教學水平和教師管理水平都給出好評的有120人.

(1)填寫教師教學水平和教師管理水平評價的列聯(lián)表:

對教師管理水平好評

對教師管理水平不滿意

合計

對教師教學水平好評

對教師教學水平不滿意

合計

請問是否可以在犯錯誤概率不超過0.001的前提下,認為教師教學水平好評與教師管理水平好評有關?

(2)若將頻率視為概率,有4人參與了此次評價,設對教師教學水平和教師管理水平全好評的人數(shù)為隨機變量.

①求對教師教學水平和教師管理水平全好評的人數(shù)的分布列(概率用組合數(shù)算式表示);

②求的數(shù)學期望和方差.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,三棱柱的棱長均為2OAC的中點,平面A'OB平面ABC,平面平面ABC.

1)求證:A'O⊥平面ABC;

2)求二面角ABCC'的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知動點P到兩定點M(﹣3,0),N3,0)的距離滿足|PM|2|PN|.

1)求證:點P的軌跡為圓;

2)記(1)中軌跡為⊙C,過定點(01)的直線l與⊙C交于A,B兩點,求△ABC面積的最大值,并求此時直線l的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】在如圖所示的多面體中, 平面, , , , , 的中點.

(1)求證: 平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】三國時代吳國數(shù)學家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設勾股形中勾股比為,若向弦圖內(nèi)隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱錐PABC中,PA⊥平面ABCABBC,PAAB,DPB中點,PC3PE.

1)求證:平面ADE⊥平面PBC;

2)在AC上是否存在一點M,使得MB∥平面ADE?若存在,請確定點M的位置,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,已知直線的參數(shù)方程是 (m>0,t為參數(shù)),曲線的極坐標方程為

(1)求直線的普通方程和曲線的直角坐標方程;

(2)若直線軸交于點,與曲線交于點,且,求實數(shù)的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知△ABC的三個頂點分別為A(﹣3,0),B2,1),C(﹣2,3),試求:

1)邊AC所在直線的方程;

2BC邊上的中線AD所在直線的方程;

3BC邊上的高AE所在直線的方程.

查看答案和解析>>

同步練習冊答案