科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為:,直線的極坐標(biāo)方程為.
(Ⅰ)寫出曲線的極坐標(biāo)方程,并指出它是何種曲線;
(Ⅱ)設(shè)與曲線交于,兩點,與曲線交于,兩點,求四邊形面積的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線的焦點為,為拋物線上異于原點的任意一點,過點的直線交拋物線于另一點,交軸的正半軸于點,且有.當(dāng)點的橫坐標(biāo)為3時,
(Ⅰ)求拋物線的方程;
(Ⅱ)若直線,且和拋物線有且只有一個公共點,試問直線(為拋物線上異于原點的任意一點)是否過定點,若過定點,求出定點坐標(biāo);若不過定點,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商店為了更好地規(guī)劃某種商品進(jìn)貨的量,該商店從某一年的銷售數(shù)據(jù)中,隨機(jī)抽取了組數(shù)據(jù)作為研究對象,如下表所示((噸)為該商品進(jìn)貨量,(天)為銷售天數(shù)):
2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅰ)根據(jù)上表提供的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(Ⅱ)在該商品進(jìn)貨量(噸)不超過(噸)的前提下任取兩個值,求該商品進(jìn)貨量(噸)恰有一個值不超過(噸)的概率.
參考公式和數(shù)據(jù):,.,.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在△中,,分別為,的中點,為的中點, ,.將△沿折起到△的位置,使得平面平面, 為的中點,如圖2.
(Ⅰ)求證: 平面;
(Ⅱ)求F到平面A1OB的距離.
圖1 圖2
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),,.
(1)當(dāng)時,求函數(shù)的極值;
(2)若在區(qū)間上存在不相等的實數(shù),使得成立,求的取值范圍;
(3)設(shè)的圖象為,的圖象為,若直線與分別交于,問是否存在整數(shù),使在處的切線與在處的切線互相平行,若存在,求出的所有值,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了選派學(xué)生參加“廈門市中學(xué)生知識競賽”,某校對本校2000名學(xué)生進(jìn)行選拔性測試,得到成績的頻率分布直方圖(如圖).規(guī)定:成績大于或等于110分的學(xué)生有參賽資格,成績110分以下(不包括110分)的學(xué)生則被淘汰.
(1)求獲得參賽資格的學(xué)生人數(shù);
(2)根據(jù)頻率分布直方圖,估算這2000名學(xué)生測試的平均成績(同組中的數(shù)據(jù)用該組區(qū)間點值作代表);
(3)若知識競賽分初賽和復(fù)賽,在初賽中有兩種答題方案:
方案一:每人從5道備選題中任意抽出1道,若答對,則可參加復(fù)賽,否則被淘汰;
方案二:每人從5道備選題中任意抽出3道,若至少答對其中2道,則可參加復(fù)賽,否則被海汰.
已知學(xué)生甲只會5道備選題中的3道,那么甲選擇哪種答題方案,進(jìn)入復(fù)賽的可能性更大?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{}的前n項和為Sn,,且對任意的n∈N*,n≥2都有。
(1)若0,,求r的值;
(2)數(shù)列{}能否是等比數(shù)列?說明理由;
(3)當(dāng)r=1時,求證:數(shù)列{}是等差數(shù)列。
查看答案和解析>>
科目: 來源: 題型:
【題目】有編號為的10個零件,測量其直徑(單位:cm),得到下面數(shù)據(jù):
編號 | ||||||||||
直徑 | 1.51 | 1.49 | 1.49 | 1.51 | 1.49 | 1.51 | 1.47 | 1.46 | 1.53 | 1.47 |
其中直徑在區(qū)間內(nèi)的零件為一等品.
(1)上述10個零件中,隨機(jī)抽取1個,求這個零件為一等品的概率.
(2)從一等品零件中,隨機(jī)抽取2個;
①用零件的編號列出所有可能的抽取結(jié)果;
②求這2個零件直徑相等的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)寫出直線的普通方程及曲線的直角坐標(biāo)方程;
(2)已知點,點,直線過點且曲線相交于,兩點,設(shè)線段的中點為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com