【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

(1)寫出直線的普通方程及曲線的直角坐標(biāo)方程;

(2)已知點(diǎn),點(diǎn),直線過(guò)點(diǎn)且曲線相交于,兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.

【答案】(1)的普通方程為,曲線的直角坐標(biāo)方程為;(2)8.

【解析】

試題(1)消去參數(shù)可得的普通方程為,極坐標(biāo)方程化為直角坐標(biāo)方程可得曲線的直角坐標(biāo)方程為;

(2)易得點(diǎn)上,所以,,所以的參數(shù)方程為,

聯(lián)立直線的參數(shù)方程與拋物線方程可得.結(jié)合參數(shù)的幾何意義可知.

試題解析:(1)由直線的參數(shù)方程消去,得的普通方程為,

所以曲線的直角坐標(biāo)方程為;

(2)易得點(diǎn)上,所以,所以

所以的參數(shù)方程為,

代入中,得.

設(shè),,所對(duì)應(yīng)的參數(shù)分別為,,.

,所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是等邊三角形的三個(gè)頂點(diǎn),且長(zhǎng)軸長(zhǎng)為4.

求橢圓E的方程;

A是橢圓E的左頂點(diǎn),經(jīng)過(guò)左焦點(diǎn)F的直線l與橢圓E交于CD兩點(diǎn),求為坐標(biāo)原點(diǎn)的面積之差絕對(duì)值的最大值.

已知橢圓E上點(diǎn)處的切線方程為T為切點(diǎn)P是直線上任意一點(diǎn),從P向橢圓E作切線,切點(diǎn)分別為NM,求證:直線MN恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且|MD||PD|,當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開(kāi)始,不分文理科;2020年開(kāi)始,高考總成績(jī)由語(yǔ)數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績(jī)從高到低劃分為A、B+、B、C+、C、D+、D、E共8個(gè)等級(jí).參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績(jī)計(jì)入考生總成績(jī)時(shí),將A至E等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績(jī).

某校高一年級(jí)共2000人,為給高一學(xué)生合理選科提供依據(jù),對(duì)六個(gè)選考科目進(jìn)行測(cè)試,其中物理考試原始成績(jī)基本服從正態(tài)分布N(60,169).

(Ⅰ)求物理原始成績(jī)?cè)趨^(qū)間(47,86)的人數(shù);

(Ⅱ)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記X表示這3人中等級(jí)成績(jī)?cè)趨^(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.

(附:若隨機(jī)變量,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于,兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若點(diǎn)的極坐標(biāo)為,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,.

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)若在區(qū)間上存在不相等的實(shí)數(shù),使得成立,求的取值范圍;

(3)設(shè)的圖象為,的圖象為,若直線分別交于,問(wèn)是否存在整數(shù),使處的切線與處的切線互相平行,若存在,求出的所有值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列判斷錯(cuò)誤的是(

A.為可導(dǎo)函數(shù)的極值點(diǎn)的必要不充分條件

B.命題“”的否定是

C.命題“若,則”的逆否命題是“若,則

D.,則方程有實(shí)數(shù)根的逆命題是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從裝有個(gè)不同小球的口袋中取出個(gè)小球(),共有種取法。在這種取法中,可以視作分為兩類:第一類是某指定的小球未被取到,共有種取法;第二類是某指定的小球被取到,共有種取法。顯然,即有等式:成立。試根據(jù)上述想法,下面式子(其中)應(yīng)等于 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的偶函數(shù)滿足,且在上是增函數(shù),若是銳角三角形的兩個(gè)內(nèi)角,則( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案