科目: 來源: 題型:
【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學(xué)計劃在一年級開設(shè)冰球課程,為了解學(xué)生對冰球運動的興趣,隨機從該校一年級學(xué)生中抽取了100人進行調(diào)查,其中女生中對冰球運動有興趣的占,而男生有10人表示對冰球運動沒有興趣額.
(1)完成列聯(lián)表,并回答能否有的把握認為“對冰球是否有興趣與性別有關(guān)”?
有興趣 | 沒興趣 | 合計 | |
男 | 55 | ||
女 | |||
合計 |
(2)已知在被調(diào)查的女生中有5名數(shù)學(xué)系的學(xué)生,其中3名對冰球有興趣,現(xiàn)在從這5名學(xué)生中隨機抽取3人,求至少有2人對冰球有興趣的概率.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目: 來源: 題型:
【題目】袋子中有大小、形狀完全相同的四個小球,分別寫有和、“諧”、“!薄皥@”四個字,有放回地從中任意摸出一個小球,直到“和”、“諧”兩個字都摸到就停止摸球,用隨機模擬的方法估計恰好在第三次停止摸球的概率。利用電腦隨機產(chǎn)生到之間取整數(shù)值的隨機數(shù),分別用,,,代表“和”、“諧”、“!薄ⅰ皥@”這四個字,以每三個隨機數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下組隨機數(shù):
由此可以估計,恰好第三次就停止摸球的概率為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】小趙和小王約定在早上7:00至7:15之間到某公交站搭乘公交車去上學(xué),已知在這段時間內(nèi),共有2班公交車到達該站,到站的時間分別為7:05,7:15,如果他們約定見車就搭乘,則小趙和小王恰好能搭乘同一班公交車去上學(xué)的概率為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】某知名電商在雙十一購物狂歡節(jié)中成交額再創(chuàng)新高,月日單日成交額達億元.某店主在此次購物狂歡節(jié)期間開展了促銷活動,為了解買家對此次促銷活動的滿意情況,隨機抽取了參與活動的位買家,調(diào)查了他們的年齡層次和購物滿意情況,得到年齡層次的頻率分布直方圖和“購物評價為滿意”的年齡層次頻數(shù)分布表.年齡層次的頻率分布直方圖:
“購物評價為滿意”的年齡層次頻數(shù)分布表:
年齡(歲) | |||||
頻數(shù) |
(1)估計參與此次活動的買家的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點值做代表);
(2)若年齡在歲以下的稱為“青年買家”,年齡在歲以上(含歲)的稱為“中年買家”,完成下面的列聯(lián)表,并判斷能否有的把握認為中、青年買家對此次活動的評價有差異?
評價滿意 | 評價不滿意 | 合計 | |
中年買家 | |||
青年買家 | |||
合計 |
附:參考公式:.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線.以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線M的極坐標(biāo)方程為.
(1)求C的極坐標(biāo)方程和曲線M的直角坐標(biāo)方程;
(2)若M與C只有1個公共點P,求m的值與P的極坐標(biāo)(,).
查看答案和解析>>
科目: 來源: 題型:
【題目】2014年7月18日15時,超強臺風(fēng)“威馬遜”登陸海南。畵(jù)統(tǒng)計,本次臺風(fēng)造成全省直接經(jīng)濟損失119.52億元.適逢暑假,小明調(diào)查住在自己小區(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟損失,作出如下頻率分布直方圖:
經(jīng)濟損失 4000元以下 | 經(jīng)濟損失 4000元以上 | 合計 | |
捐款超過500元 | 30 | ||
捐款低于500元 | 6 | ||
合計 |
(1)臺風(fēng)后區(qū)委會號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如上表,在表格空白處填寫正確數(shù)字,并說明是否有以上的把握認為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟損失是否到4000元有關(guān)?
(2)臺風(fēng)造成了小區(qū)多戶居民門窗損壞,若小區(qū)所有居民的門窗均由李師傅和張師傅兩人進行維修,李師傅每天早上在7:00到8:00之間的任意時刻來到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時刻來到小區(qū),求連續(xù)3天內(nèi),李師傅比張師傅早到小區(qū)的天數(shù)的數(shù)學(xué)期望.
附:臨界值表
參考公式: .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點在橢圓上,為坐標(biāo)原點,直線的斜率與直線的斜率乘積為.
(1)求橢圓的方程;
(2)不經(jīng)過點的直線(且)與橢圓交于,兩點,關(guān)于原點的對稱點為(與點不重合),直線,與軸分別交于兩點,,求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,是以PF為底邊的等腰三角形,PA平行于x軸,點,且點P在直線上運動.記點A的軌跡為C.
(1)求C的方程.
(2)直線AF與C的另一個交點為B,等腰底邊的中線與直線的交點為Q,試問的面積是否存在最小值?若存在,求出該值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖在四棱錐中,是邊長為2的等邊三角形,,Q為四邊形的外接圓的圓心,平面,M在棱上,且.
(1)證明:平面.
(2)若與平面所成角為60°,求與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com