科目: 來源: 題型:
【題目】已知橢圓C:的左右頂點為A、B,右焦點為F,一條準線方程是,短軸一端點與兩焦點構成等邊三角形,點P、Q為橢圓C上異于A、B的兩點,點R為PQ的中點
求橢圓C的標準方程;
直線PB交直線于點M,記直線PA的斜率為,直線FM的斜率為,求證:為定值;
若,求直線AR的斜率的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,.
(1)如果函數的單調遞減區(qū)間為,求函數的解析式;
(2)在(1)的條件下,求函數的圖象在點處的切線方程;
(3)若不等式恒成立,求實數a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解某地區(qū)觀眾對大型綜藝活動《中國好聲音》的收視情況,隨機抽取了100名觀眾進行調查,其中女性有55名.下面是根據調查結果繪制的觀眾收看該節(jié)目的場數與所對應的人數表:
場數 | 9 | 10 | 11 | 12 | 13 | 14 |
人數 | 10 | 18 | 22 | 25 | 20 | 5 |
將收看該節(jié)目場次不低于13場的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.
(1)根據已知條件完成下面的2×2列聯表,并據此資料我們能否有95%的把握認為“歌迷”與性別有關?
非歌迷 | 歌迷 | 合計 | |
男 | |||
女 | |||
合計 |
(2)將收看該節(jié)目所有場次(14場)的觀眾稱為“超級歌迷”,已知“超級歌迷”中有2名女性,若從“超級歌迷”中任意選取2人,求至少有1名女性觀眾的概率.
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
附:K2=.
查看答案和解析>>
科目: 來源: 題型:
【題目】某親子公園擬建議廣告牌,將邊長為米的正方形ABCD和邊長為1米的正方形AEFG在A點處焊接,AM、AN、GM、DN均用加強鋼管支撐,其中支撐鋼管GM、DN垂直于地面于M點和N點,且GM、DN、MN長度相等不計焊接點大小
若時,求焊接點A離地面距離;
若記,求加強鋼管AN最長為多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著網絡的發(fā)展,網上購物越來越受到人們的喜愛,各大購物網站為增加收入,促銷策略越來越多樣化,促銷費用也不斷增加,下表是某購物網站2018年1-8月促銷費用(萬元)和產品銷量(萬件)的具體數據:
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
促銷費用 | 2 | 3 | 6 | 10 | 13 | 21 | 15 | 18 |
產品銷量 | 1 | 1 | 2 | 3 | 3.5 | 5 | 4 | 4.5 |
(1)根據數據繪制的散點圖能夠看出可用線性回歸模型與的關系,請用相關系數加以說明(系數精確到0.001);
(2)建立關于的線性回歸方程(系數精確到0.001);如果該公司計劃在9月份實現產品銷量超6萬件,預測至少需要投入費用多少萬元(結果精確到0.01).
參考數據:,,,,,其中,分別為第個月的促銷費用和產品銷量,.
參考公式:(1)樣本相關系數;
(2)對于一組數據,,…,,其回歸方程的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目: 來源: 題型:
【題目】排成一排的10名學生生日的月份均不相同.有名教師,依次挑選這些學生參加個興趣小組,每名學生恰被一名教師挑選,且保持學生的排序不變,每名教師挑出的學生必須滿足生日的月份是逐漸增加或逐漸減少的(挑選一名或兩名學生也認為是逐漸增加或逐漸減少的),每名教師盡可能多地選學生.對于學生所有可能的排序,求的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線l的參數方程為為參數), 橢圓C的參數方程為為參數)。在平面直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,點A的極坐標為(2,
(1)求橢圓C的直角坐標方程和點A在直角坐標系下的坐標
(2)直線l與橢圓C交于P,Q兩點,求△APQ的面積
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數是定義在上的偶函數,當時,.現已畫出函數在軸右側的圖象,如圖所示.
(1)畫出函數在軸左側的圖象,根據圖象寫出函數在上的單調區(qū)間;
(2)求函數在上的解析式;
(3)解不等式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com