科目: 來源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時,求曲線在點處的切線方程;
(2)當(dāng)時,求在區(qū)間上的最大值和最小值;
(3)當(dāng)時,若方程在區(qū)間上有唯一解,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時,求曲線在處的切線方程;
(2)當(dāng)時,判斷 在上的單調(diào)性,并說明理由;
(3)當(dāng)時,求證: ,都有
查看答案和解析>>
科目: 來源: 題型:
【題目】橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)設(shè)為橢圓上任一點, 為其右焦點, 是橢圓的左、右頂點,點滿足.
①證明: 為定值;
②設(shè)是直線上的任一點,直線分別另交橢圓于兩點,求的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需要,兩種原料,已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限額如表所示.如果生產(chǎn)1噸甲、乙產(chǎn)品可獲得利潤分別為3萬元、4萬元,則該企業(yè)每天可獲得最大利潤為( 。
甲 | 乙 | 原料限額 | |
(噸) | 3 | 2 | 10 |
(噸) | 1 | 2 | 6 |
A. 10萬元B. 12萬元C. 13萬元D. 14萬元
查看答案和解析>>
科目: 來源: 題型:
【題目】定義在上的函數(shù)滿足:對于任意實數(shù)都有恒成立,且當(dāng)時,.
(Ⅰ)判定函數(shù)的單調(diào)性,并加以證明;
(Ⅱ)設(shè),若函數(shù)有三個零點從小到大分別為,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某投資人欲將5百萬元資金投人甲、乙兩種理財產(chǎn)品,根據(jù)銀行預(yù)測,甲、乙兩種理財產(chǎn)品的收益與投入資金的關(guān)系式分別為,,其中為常數(shù)且.設(shè)對乙種產(chǎn)品投入資金百萬元.
(Ⅰ)當(dāng)時,如何進行投資才能使得總收益最大;(總收益)
(Ⅱ)銀行為了吸儲,考慮到投資人的收益,無論投資人資金如何分配,要使得總收益不低于0.45百萬元,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)設(shè),f(x)的最小值是,最大值是3,求實數(shù)m,n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com