相關(guān)習(xí)題
 0  261145  261153  261159  261163  261169  261171  261175  261181  261183  261189  261195  261199  261201  261205  261211  261213  261219  261223  261225  261229  261231  261235  261237  261239  261240  261241  261243  261244  261245  261247  261249  261253  261255  261259  261261  261265  261271  261273  261279  261283  261285  261289  261295  261301  261303  261309  261313  261315  261321  261325  261331  261339  266669 

科目: 來(lái)源: 題型:

【題目】北京、張家口2022年冬奧會(huì)申辦委員會(huì)在俄羅斯索契舉辦了發(fā)布會(huì),某公司為了競(jìng)標(biāo)配套活動(dòng)的相關(guān)代言,決定對(duì)旗下的某商品進(jìn)行一次評(píng)估,該商品原來(lái)每件售價(jià)為25元,年銷售8萬(wàn)件.

(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?

(2)為了抓住申奧契機(jī),擴(kuò)大該商品的影響力,提高年銷售量.公司決定立即對(duì)該商品進(jìn)行全面技術(shù)革新和營(yíng)銷策略改革,并提高定價(jià)到元.公司擬投入萬(wàn)作為技改費(fèi)用,投入50萬(wàn)元作為固定宣傳費(fèi)用,投入萬(wàn)元作為浮動(dòng)宣傳費(fèi)用.試問(wèn):當(dāng)該商品改革后的銷售量至少應(yīng)達(dá)到多少萬(wàn)件時(shí),才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)上的偶函數(shù).

1)求值;

2)解的不等式的解集;

3)若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】隨著社會(huì)的發(fā)展,終身學(xué)習(xí)成為必要,工人知識(shí)要更新,學(xué)習(xí)培訓(xùn)必不可少,現(xiàn)某工廠有工人1000名,其中250名工人參加短期培訓(xùn)(稱為類工人),另外750名工人參加過(guò)長(zhǎng)期培訓(xùn)(稱為類工人),從該工廠的工人中共抽查了100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù))得到類工人生產(chǎn)能力的莖葉圖(左圖),類工人生產(chǎn)能力的頻率分布直方圖(右圖).

(1)問(wèn)類、類工人各抽查了多少工人,并求出直方圖中的

(2)求類工人生產(chǎn)能力的中位數(shù),并估計(jì)類工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(3)若規(guī)定生產(chǎn)能力在內(nèi)為能力優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)在答題卡上完成下面的列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)0.1%的前提下,認(rèn)為生產(chǎn)能力與培訓(xùn)時(shí)間長(zhǎng)短有關(guān).能力與培訓(xùn)時(shí)間列聯(lián)表

短期培訓(xùn)

長(zhǎng)期培訓(xùn)

合計(jì)

能力優(yōu)秀

能力不優(yōu)秀

合計(jì)

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為t為參數(shù)),直線l2的參數(shù)方程為.設(shè)l1l2的交點(diǎn)為P,當(dāng)k變化時(shí),P的軌跡為曲線C.

(1)寫(xiě)出C的普通方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3ρ(cosθ+sinθ) =0,Ml3C的交點(diǎn),求M的極徑.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】知函數(shù),函數(shù)

定義域?yàn)?/span>求實(shí)數(shù)取值范圍;

⑵當(dāng)時(shí),求函數(shù)最小值;

是否存在非負(fù)實(shí)數(shù)、使得函數(shù)定義域?yàn)?/span>,值域?yàn)?/span>,若存在,求出值;若不存在,則說(shuō)明理由

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知在幾何體ABCDE中,AB⊥平面BCE,且BCE是正三角形,四邊形ABCD為正方形,F是線段CD上的中點(diǎn),G是線段BE的中點(diǎn),且AB=2

1)求證:GF∥平面ADE;

2)求三棱錐FBGC的表面積.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】為推行“新課堂”教學(xué)法,某老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式在甲、乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn),為了解教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出如圖所示的莖葉圖,若成績(jī)大于70分為“成績(jī)優(yōu)良”.

(1)由統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”?

甲班

乙班

總計(jì)

成績(jī)優(yōu)良

成績(jī)不優(yōu)良

總計(jì)

(2)從甲、乙兩班40個(gè)樣本中,成績(jī)?cè)?0分以下(不含60分)的學(xué)生中任意選取2人,求抽取的2人中恰有一人來(lái)自乙班的概率.

附:,(

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】在四棱錐PABCD中,ABCD是矩形,PA=AB,EPB的中點(diǎn).

1)若過(guò)C,DE的平面交PA于點(diǎn)F,求證:FPA的中點(diǎn);

2)若平面PAB⊥平面PBC,求證:BCPA

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某工廠產(chǎn)生的廢氣經(jīng)過(guò)過(guò)濾后排放,規(guī)定排放時(shí)污染物的殘留含量不得超過(guò)1%.已知在過(guò)濾過(guò)程中的污染物的殘留數(shù)量P(單位:毫克/升)與過(guò)濾時(shí)間t(單位:小時(shí))之間的函數(shù)關(guān)系為:為正常數(shù),為原污染物數(shù)量).若前5個(gè)小時(shí)廢氣中的污染物被過(guò)濾掉了90%,那么要能夠按規(guī)定排放廢氣,至少還需要過(guò)濾(

A. 小時(shí)B. 小時(shí)C. 5小時(shí)D. 小時(shí)

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】現(xiàn)有某高新技術(shù)企業(yè)年研發(fā)費(fèi)用投入(百萬(wàn)元)與企業(yè)年利潤(rùn)(百萬(wàn)元)之間具有線性相關(guān)關(guān)系,近5年的年研發(fā)費(fèi)用和年利潤(rùn)的具體數(shù)據(jù)如表:

年研發(fā)費(fèi)用(百萬(wàn)元)

年利潤(rùn) (百萬(wàn)元)

數(shù)據(jù)表明之間有較強(qiáng)的線性關(guān)系.

(1)求對(duì)的回歸直線方程;

(2)如果該企業(yè)某年研發(fā)費(fèi)用投入8百萬(wàn)元,預(yù)測(cè)該企業(yè)獲得年利潤(rùn)為多少?

參考數(shù)據(jù):回歸直線的系數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案