科目: 來源: 題型:
【題目】某高中一年級600名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:
(1)從總體的600名學(xué)生中隨機(jī)抽取一人,估計其分?jǐn)?shù)小于70的概率;
(2)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(3)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目: 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856336)[選修4-5:不等式選講]
已知函數(shù)f(x)=-.
(Ⅰ)解不等式:f(x)<2;
(Ⅱ)若x∈R,f(x)≥t2-t恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856335)[選修4-4:坐標(biāo)系與參數(shù)方程]
以原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知A(2,π),B(2, ),圓C的極坐標(biāo)方程為ρ2-6ρcos θ+8ρsin θ+21=0.F為圓C上的任意一點.
(Ⅰ)寫出圓C的參數(shù)方程;
(Ⅱ)求△ABF的面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856334)
已知函數(shù)f(x)=ln x+ax2+1.
(Ⅰ)當(dāng)a=-1時,求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a>0時,證明:存在正實數(shù)λ,使得λ恒成立.
查看答案和解析>>
科目: 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856333)
已知橢圓C: (a>b>0)的離心率為,其右焦點為F(c,0),第一象限的點A在橢圓C上,且AF⊥x軸.
(Ⅰ)若橢圓C過點(1,- ),求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知直線l:y=x-c與橢圓C交于M,N兩點,且B(4c,yB)為直線l上的點,證明:直線AM,AB,AN的斜率滿足kAB=.
查看答案和解析>>
科目: 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856332)
已知三棱柱ABC-A1B1C1如圖所示,其中CA⊥平面ABB1A1,四邊形ABB1A1為菱形,∠AA1B1=60°,E為BB1的中點,F為CB1的中點.
(Ⅰ)證明:平面AEF⊥平面CAA1C1;
(Ⅱ)若CA=2,AA1=4,求B1到平面AEF的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856331)
甲、乙兩家快餐店對某日7個時段的光顧的客人人數(shù)進(jìn)行統(tǒng)計并繪制莖葉圖如下圖所示(下面簡稱甲數(shù)據(jù)、乙數(shù)據(jù)),且乙數(shù)據(jù)的眾數(shù)為17,甲數(shù)據(jù)的平均數(shù)比乙數(shù)據(jù)平均數(shù)少2.
(Ⅰ)求a,b的值,并計算乙數(shù)據(jù)的方差;
(Ⅱ)現(xiàn)從乙數(shù)據(jù)中不大于16的數(shù)據(jù)中隨機(jī)抽取兩個,求至少有一個數(shù)據(jù)小于10的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856330)
已知等比數(shù)列{an}的前n項和為Sn,且a3=4,a3,a4+2,a5成等差數(shù)列.?dāng)?shù)列{}的前n項和為Tn.
(Ⅰ)求數(shù)列{an}的通項公式以及前n項和Sn的表達(dá)式;
(Ⅱ)若Tn<m對任意n∈N*恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856325)已知函數(shù)f(x)=+eln x,直線l:y=kx(k≠0)與函數(shù)f(x)的圖象相切于點A(t,f(t))(f(t)≠0),則( )
A. t∈(0,1) B. t∈(1,e) C. t∈(e,3) D. t∈(3,e2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com