【題目】某高中一年級600名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:
(1)從總體的600名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;
(2)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(3)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.
【答案】(1)0.4(2)(3).
【解析】試題分析:(1)根據(jù)頻率=組距×高,可得分?jǐn)?shù)小于70的概率;(2)先計(jì)算樣本中分?jǐn)?shù)不小于50的頻率,進(jìn)而計(jì)算可估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);(3)先計(jì)算樣本中分?jǐn)?shù)不小于70的學(xué)生人數(shù),即可算出樣本中分?jǐn)?shù)不小于70的男生人數(shù),進(jìn)而得到答案.
試題解析:(1)(0.02+0.04)×10=0.6,1-0.6=0.4 樣本分?jǐn)?shù)小于70的頻率為0.4
∴總體中隨機(jī)抽取一人,其分?jǐn)?shù)小于70的概率估計(jì)為0.4
(2)根據(jù)題意,樣本中分?jǐn)?shù)不小于50的頻率為,分?jǐn)?shù)在區(qū)間內(nèi)的人數(shù)為.
∴總體中分?jǐn)?shù)在區(qū)間內(nèi)的人數(shù)估計(jì)為.
(3)由題意可知,樣本中分?jǐn)?shù)不小于70的學(xué)生人數(shù)為
∴樣本中分?jǐn)?shù)不小于70的男生人數(shù)為
∴樣本中的男生人數(shù)為,女生人數(shù)為,男生和女生人數(shù)的比例為.
∴根據(jù)分層抽樣原理,總體中男生和女生人數(shù)的比例估計(jì)為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)空間幾何體的三視圖如圖所示,則這個(gè)幾何體的表面積為( )
A. 26+4 B. 27+4 C. 34+4 D. 17+2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)一位網(wǎng)民在網(wǎng)上光顧某淘寶小店,經(jīng)過一番瀏覽后,對該店鋪中的五種商品有購買意向.已知該網(wǎng)民購買兩種商品的概率均為,購買兩種商品的概率均為,購買種商品的概率為.假設(shè)該網(wǎng)民是否購買這五種商品相互獨(dú)立.
(1)求該網(wǎng)民至少購買4種商品的概率;
(2)用隨機(jī)變量表示該網(wǎng)民購買商品的種數(shù),求的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018屆吉林省普通中學(xué)高三第二次調(diào)研】某校冬令營有三名男同學(xué)A,B,C和三名女同學(xué)X,Y,Z,
(1)從6人中抽取2人參加知識競賽,求抽取的2人都是男生的概率;
(2)若從這3名男生和3名女生中各任選一名,求這2人中包含A且不包含X的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856332)
已知三棱柱ABC-A1B1C1如圖所示,其中CA⊥平面ABB1A1,四邊形ABB1A1為菱形,∠AA1B1=60°,E為BB1的中點(diǎn),F為CB1的中點(diǎn).
(Ⅰ)證明:平面AEF⊥平面CAA1C1;
(Ⅱ)若CA=2,AA1=4,求B1到平面AEF的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:,其中(e為橢圓離心率),焦距為2,過點(diǎn)M(4,0)的直線l與橢圓C交于點(diǎn)A,B,點(diǎn)B在AM之間.又點(diǎn)A,B的中點(diǎn)橫坐標(biāo)為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p:f(x)=在區(qū)間(1,+∞)上是減函數(shù);q:若x1,x2是方程x2-ax-2=0的兩個(gè)實(shí)根,則不等式m2+5m-3≥|x1-x2|對任意實(shí)數(shù)a∈[-1,1]恒成立.若p不正確,q正確,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的方程為,定點(diǎn),點(diǎn)是曲線上的動(dòng)點(diǎn), 為的中點(diǎn).
(1)求點(diǎn)的軌跡的直角坐標(biāo)方程;
(2)已知直線與軸的交點(diǎn)為,與曲線的交點(diǎn)為,若的中點(diǎn)為,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)動(dòng)點(diǎn)到定點(diǎn)的距離比它到軸的距離大,記點(diǎn)的軌跡為曲線.
(1)求點(diǎn)的軌跡方程;
(2)若圓心在曲線上的動(dòng)圓過點(diǎn),試證明圓與軸必相交,且截軸所得的弦長為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com