科目: 來(lái)源: 題型:
【題目】體積為 的球有一個(gè)內(nèi)接正三棱錐P﹣ABC,PQ是球的直徑,∠APQ=60°,則三棱錐P﹣ABC的體積為( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】點(diǎn)P在雙曲線 (a>0,b>0)的右支上,其左、右焦點(diǎn)分別為F1、F2 , 直線PF1與以坐標(biāo)原點(diǎn)O為圓心、a為半徑的圓相切于點(diǎn)A,線段PF1的垂直平分線恰好過(guò)點(diǎn)F2 , 則該雙曲線的漸近線的斜率為( )
A.±
B.±
C.±
D.±
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】設(shè)ω>0,函數(shù)y=2cos(ωx+ )﹣1的圖象向右平移 個(gè)單位后與原圖象重合,則ω的最小值是( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知集合,且.
(1)證明:若,則是偶數(shù);
(2)設(shè),且,求實(shí)數(shù)的值;
(3)設(shè),求證:;并求滿足的的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】若數(shù)列{an}和{bn}的項(xiàng)數(shù)均為n,則將 定義為數(shù)列{an}和{bn}的距離.
(1)已知 ,bn=2n+1,n∈N* , 求數(shù)列{an}和{bn}的距離dn .
(2)記A為滿足遞推關(guān)系 的所有數(shù)列{an}的集合,數(shù)列{bn}和{cn}為A中的兩個(gè)元素,且項(xiàng)數(shù)均為n.若b1=2,c1=3,數(shù)列{bn}和{cn}的距離大于2017,求n的最小值.
(3)若存在常數(shù)M>0,對(duì)任意的n∈N* , 恒有 則稱數(shù)列{an}和{bn}的距離是有界的.若{an}與{an+1}的距離是有界的,求證: 與 的距離是有界的.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= (e為自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)a=b=0時(shí),直接寫出f(x)的值域(不要求寫出求解過(guò)程);
(2)若a= ,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若f(1)=1,且方程f(x)=1在(0,1)內(nèi)有解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為 ,左、右焦點(diǎn)分別為圓F1、F2 , M是C上一點(diǎn),|MF1|=2,且| || |=2 .
(1)求橢圓C的方程;
(2)當(dāng)過(guò)點(diǎn)P(4,1)的動(dòng)直線l與橢圓C相交于不同兩點(diǎn)A、B時(shí),線段AB上取點(diǎn)Q,且Q滿足| || |=| || |,證明點(diǎn)Q總在某定直線上,并求出該定直線的方程.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,某生態(tài)園將一塊三角形地ABC的一角APQ開辟為水果園,已知角A為120°,AB,AC的長(zhǎng)度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP、AQ總長(zhǎng)度為200米,如何可使得三角形地塊APQ面積最大?
(2)已知竹籬笆長(zhǎng)為 米,AP段圍墻高1米,AQ段圍墻高2米,造價(jià)均為每平方米100元,求圍墻總造價(jià)的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD是菱形, ,PA=PD,F(xiàn)為AD的中點(diǎn),PD⊥BF.
(1)求證:AD⊥PB;
(2)若菱形ABCD的邊長(zhǎng)為6,PA=5,求四面體PBCD的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com